Fabrication of composites based on Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub> and SiO<sub>2</sub>

Authors

  • Gordana Ruseska Faculty of Technology and Metallurgy, Ss. Cyril & Methodius University, Skopje,
  • Emilija Fidančevska Faculty of Technology and Metallurgy, Ss. Cyril & Methodius University, Skopje,
  • Jörg Bossert Institute of Materials Science & Technology (IMT), Friedrich-Schiller-University Jena, Löbdergraben 32, D-07743 Jena,
  • Venceslav Vassilev University of Chemical Technology and Metallurgy, 8 Kliment Ohridski blvd., 1765 Sofia,

DOI:

https://doi.org/10.20450/mjcce.2006.298

Keywords:

hydroxyapatite, SiO2, thermal expansion coefficients, mechanical properties, porosity, model equations

Abstract

The aim of the work described in this paper was to make a composite consisting of hydroxyapatite as bioactive matrix and SiO2 as bioinert component. Five different systems were formed where the content of SiO2 in the hydroxyapatite matrix were 10, 30, 50, 70 and 90 wt%. Consolidation of the composites was made by pressing (P = 15 MPa) and sintering (T = 1200 ºC/1h). Dilatometer investigations of the composites show that composites with 10, 30 and 50 wt% are in thermal equilibrium. The increasement of SiO2 content is reflected in decreasement of the density of the sintered composites. The E-modulus and shear modulus of the composites with 10, 30 and 50 wt% SiO2 are 32 ± 1 GPa and 18 ± 3 GPa, respectively. The equations given by several authors like Turner, Kerner, Thomas, Tummala & Friedberg and Taya were used to predict the coefficient of thermal expansion of the composites as a function of E-modulus, shear modulus, module of compressibility, Poisson’s ratio and volume fraction of the constitutive phases. According to the coefficients of correlation, the equations given by Turner and Kerner give the best approximation of the experimental data.

References

B. S. Chang, C. K. Lee, K. S. Hong, H. J. Youn, H. S. Ryu, S. S. Chung, K. W. Park., Osteoconduction of porous hydroxyapatite with various pore configurations, Biomaterials, 21, 1291 (2000).

C. Knabe, F. C. M. Driessens, J. A. Planell, R. Gildenhaar, R. Berger, D. Reif, R. Fitzner, R. J. Radlanski, U. Gross, Evaluation of calcium phosphates and experimental calcium phosphate bone cement using osteogenic cultures, J. Biomed. Mater. Res., 52, 3, 498–508 (2000).

Q. Q. Qui, P. Ducheyne, P. S. Ayaswamy, New bioactive, degradable composite microspheres as tissue engineering substrates, J. Biomed. Mater. Res., 52, 1, 66–76, 2000.

P. Siriphannon, Y. Kameshima, A. Yasumori, K. Okada, S. Hayashi, Influence of preparation conditions on the microstructure and bioactivity of a-CaSiO3 ceramics: Formation of hydroxyapatite in simulated body fluid, J. Biomed. Mater. Res., 52, I, 30–39 (2000).

P. Siriphannon, Y. Kameshima, A. Yasumori, K. Okada, S. Hayashi, Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid, J. Eur. Ceram. Soc., 22, 4, 511–520 (2002).

H. S. Ryu, J. K. Lee, H. Kim, K. S. Hong, New type of bioactive materials: Hydroxyapatite / a-wollastonite composites, J. Mater. Sci., 20, 5, 1154–1163 (2005).

P. Siriphannon, S. Hayashi, A. Yasumori, K. Okada, Preparation and sintering of CaSiO3 from coprecipitated powder using NaOH as precipitant and its apatite formation in simulated body fluid solution, J. Mater. Res., 14, 2, 529 (1999).

P. Siriphannon, Y. Kameshima, A. Yasumori, K. Okada, In bioceramics 12, ed. H. Ohgushi, G. W. Hastings and T. Yoshikawa, World Scientific, Singapore, 1999, pp. 145–148.

P. Siriphannon, Y. Kameshima, A. Yasumori, K. Okada, S. Hayashi, Influence of preparation conditions on the microstructure and bioactivity of a-CaSiO3 ceramics: Formation of hydroxyapatite in simulated body fluid, J. Biomed. Mater. Res., 52, 30 (2000).

P. S.Turner, Thermal expansion stressesin Reinforced Plastics, J. Res. NBS, 37, 239 (1946).

E. H. Kerner, Elastic and Thermoelastic properties of Composite Media, Proc. Phys. Soc., London, 69 B, , 808 (1956).

J. P. Thomas, Effect of Inorganic Fillers on Coefficient of Thermal Expansion of Polymeric Materials, Tech. Report, AD, 287826, 1966.

R. R. Tummala, A. L. Friedberg, Thermal Expansion of Composite Materials, J. Appl. Phys., 41, 5104 (1970).

. M. Taya, S. Hayashi, A. S. Kobayashi, et al., Toughening of a Particulate Ceramic-Matrix Composite by Thermal Residual Stress, J. Am. Ceram. Soc., 73, 1382–1391 (1990).

E. Fidančevska, G. Ruseska, S. Zafirovski, B. Pavlovski, Thermal – expansion and mechanical properties of the Ca10(PO4)6(OH)2 – TiO2 composite, Science of Sintering, 34, 241–246 (2002).

M. Ogiso, Y. Yamashita, T. Matsumoto, Differences in microstructural characteristics of dense HA and HA coatings, J. Biomed. Mater. Res., 41, 296 (1998).

Ernest M. Levin, Carl R. Robbins, Howard F. Mc Murdie, Phase Diagrams for Ceramists, Complied at the National Bureau of Standards, Edited and Published by The Am. Ceram. Soc., Inc. 1964.

Downloads

Published

2006-12-15

How to Cite

Ruseska, G., Fidančevska, E., Bossert, J., & Vassilev, V. (2006). Fabrication of composites based on Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub> and SiO<sub>2</sub>. Macedonian Journal of Chemistry and Chemical Engineering, 25(2), 139–144. https://doi.org/10.20450/mjcce.2006.298

Issue

Section

Materials Engineering