Broccoli isothiocyanates content and in vitro availability according to variety and origin

M. Carmen Rodríguez-Hernández, Sonia Medina, Angel Gil-Izquierdo, Carmen Martínez-Ballesta, Diego A. Moreno


Broccoli is considered one of the healthiest vegetables own to its high content of beneficial biologically active compounds – the breakdown products of the glucosinolates, the isothiocyanates. The aim of this work was to characterize the production of isothiocyanates (sulforaphane and iberin and related metabolites) from different sources of glucosinolates by means of comparison between different broccoli cultivars and commercial samples, investigating their composition and in vitro bioavailability. Differences in the major intact glucosinolates were observed between the different experimental and commercial samples showing lower concentrations of glucosinolates the latest. The simulation of digestion reduced the concentration of parental phytochemicals (glucosinolates) producing the hydrolysis to biologically active isothiocyanates. The commercial samples showed lower levels of ITCs than experimental broccoli cultivars. Measurement of the glucosinolates ingested by UPLC-QqQ-MS/MS has allowed an exact quantifying of these compounds, particularly isothiocyanates, which will help to futures cancer chemoprevention studies.


Sulforaphane; iberin; digestibility; maca; isothiocyanates

Full Text:



D. T, Verhoeven,, R. A. Goldbohm, G. van Poppel, H. Verhagen. Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol Biomarkers Prevent., 5, 733–748 (1996).

J. V. Higdon, B. Delage, D. E. Williams, R.H. Dashwood. Cruciferous Vegetables and Human Cancer Risk: Epidemiologic Evidence and Mechanistic Basis. Pharmacol Res., 55, 224–236 (2007).

D.A. Moreno, M. Carvajal, C. López-Berenguer, C. García-Viguera. Chemical and biological characterisation of nutraceutical compounds of broccoli. J Pharmaceut Biomed., 41, 1508–22 (2006).

J. W. Fahey, A. T. Zalcmann, P. Talalay. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry., 56,5–51 (2001).

E. H. Jeffery, M. Araya. Physiological effects of broccoli consumption. Phytochemistry., 8,283-298 (2009).

J. D. Clarke, K. Riedl, D. Bella, S. J. Schwartz, J.F. Stevens, E. Ho. Comparison of Isothiocyanate Metabolite Levels and Histone Deacetylase Activity in Human Subjects Consuming Broccoli Sprouts or Broccoli Supplement. J Agr Food Chem., 59,10955–10963 (2011).

A. M. Bones, J. T. Rossiter. The myrosinase–glucosinolate system, its organisation and biochemistry. Physiol Plantarum., 97,194–208 (1996).

C. D. Grubb, S. Abel. Glucosinolate metabolism and its control. Trends Plant Sci., 11, 89–100 (2006).

T. A. Shapiro, J. W. Fahey, A. T. Dinkova-Kostova, W. D. Holtzclaw, K. K. Stephenson, K. L. Wade, L. Ye, P. Talalay. Safety, Tolerance, and Metabolism of Broccoli Sprout Glucosinolates and Isothiocyanates: A Clinical Phase I Study. Nutr Cancer ., 55, 53-62 (2006).

L. Mi, Z. Xiao, B. L. Hood, S. Dakshanamurthy, X. Wang, S. Govind, T. P. Conrads, T. D. Veenstra, F. L. Chung. Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. J Biol Chem., 283,22136–22146 (2008).

H. Yuan, S. Yao, Y. You, G. Xia, Q. You. Antioxidant Activity of Isothiocyanate Extracts from Broccoli. Chinese J Chem Eng., 18., 312–321 (2010).

R. F. Mithen. Glucosinolates and their degradation products. Adv Bot Res., 35, 213–262 (2001).

M.W. Farnham, J.W. Fahey, K.K. Stephenson. Selection for floret glucoraphanin concentration among inbred Broccoli. HortScience., 34, 448 (1999).

S. Pérez-Balibrea, D. A. Moreno, C. García-Viguera. Genotypic effects on the phytochemical quality of seeds and sprouts from commercial broccoli cultivars. Food Chem., 125,348–354 (2011).

N. Baenas, D. A. Moreno, C. García-Viguera. Selecting sprouts of Brassicaceae for optimum phytochemical composition. J Agr Food Chem., 60, 11409-11420 (2012).

G. R. De Nicola, M. Bagatta, E. Pagnotta, D. Angelino, L. Gennari, P. Ninfali, P. Rollin, R. Lori. Comparison of bioactive phyrochemical content and reléase of isothiocyanates in selected brassica sprouts. Food Chem., 141, 297-303 (2013).

A. Gil-Izquierdo, P. Zafrilla, F. A. Tomás-Barberán. An in vitro method to simulate phenolic compound release from the food matrix in the gastrointestinal tract. Eur Food Res Technol., 214155-159 (2002).

A. Martinez-Sanchez, A. Allende, R. N. Bennett, F. Ferreres, M. I. Gil. Microbial, nutritional and sensory quality of rocket leaves as affected by different sanitizers. Postharvest Biol Tec., 42,86–97 (2006).

L. Rask, E. Andréasson, B. Ekbom, S. Eriksson, B. Pontoppidan, J. Meijer. Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol., 42, 93–114(2000).

N. Clossais-Besnard, F. Larher. Physiological role of glucosinolates in Brassica napus. Concentration and distribution pattern of glucosinolates among plant organs during a complete life cycle. J Sci Food Agr.,56,25–38(2006).

G. Padilla, M. E. Cartea, P. Velasco, A. de Harob, A. Ordás. Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry., 68,536–545 (2007).

M. Francisco, M. E. Cartea, P. Soengas, P. Velasco. Effect of Genotype and Environmental Conditions on Health-Promoting Compounds in Brassica rapa. J Agr Food Chem., 59, 2421–2431 (2011).

S. Piacente, V. Carbone, A. Plaza, A. Zampelli, C. Pizza. Investigation of the Tuber Constituents of Maca (Lepidium meyenii Walp.). J Agr Food Chem., 50, 5621–5625 (2002).

J. M. Abercrombie, M. W. Farnham, J. W. Rushing Genetic combining ability of glucoraphanin level and other horticultural traits of broccoli. Euphytica., 143, 145–51 (2005).

J.W. Fahey, Y. Zhang, P. Talalay. Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. PNAS., 94, 10367-10372 (1997).

A. F. Brown, G. G. Yousef, E. H. Jeffery, B. P. Klein, M. A. Wallig, M. M. Kushad, J. A. Juvik. Glucosinolate Profiles in Broccoli: Variation in Levels and Implications in Breeding for Cancer Chemoprotection. J Am Soc Hortic Sci., 127, 807-813 (2002).

M.W. Farnham, K.K. Stephenson, J.W. Fahey. Glucoraphanin level in broccoli sed in largely determined by genotype. HortScience., 40, 50-53 (2005).

C. S. Charron, A. M. Saxton, C. E. Sams. Relationship of climate and genotype to seasonal variation in the glucosinolate–myrosinase system. II. Myrosinase activity in ten cultivars of Brassica oleracea grown in fall and spring seasons. J Sci Food Agr., 85, 682–690 (2005).

T. Oliviero, R. Verkerk, M. Dekker. Effect of water content and temperature on glucosinolate degradation kinetics in broccoli (Brassica oleracea var. italica). Food Chem., 132, 2037-2045 (2012).

R. M. Bheemreddy, E. H. Jeffery. The metabolic fate of purified glucoraphanin in F344 rats. J Agr Food Chem., 55,2861–2866(2007).

R. M. Bheemreddy, E. H.Jeffery. The metabolic fate of purified glucoraphanin in F344 rats. J Agr Food Chem., 55, 2861-2866 (2007).

C. C. Conaway, J. Krzeminski, S. Amin, F. L. Chung. Decomposition rates of isothiocyanate conjugates determine their activity as inhibitors of cytochrome p450 enzymes. Chem Res Toxicol., 14, 1170–1176 (2001).

R. Dominguez-Perles, S. Medina, D. A. Moreno, C. García-Viguera, F. Ferreres, A. Gil-Izquierdo. Bioavailability of glucosinolates and isothiocyanates from ½ and 1 servings of Broccoli sprouts by a new UHPLC/MS/MS. Food Chem., Under review, (2013).

M. C. Rodríguez-Hernández, D. A. Moreno, M. Carvajal, C. García-Viguera, M. C. Martínez-Ballesta. Natural Antioxidants in Purple Sprouting Broccoli under Mediterranean Climate. J Food Sci., 77, C1058-C1063 (2012).

M. Wielanek, H. Urbanek. Glucotropaeolin and mirosinase production in hairy root cultures of Tropaeolum majus. Plant Cell Tiss Org., 57, 39-45(1999).

. M. Traka, R. Mithen. Glucosinolates, isothiocyanates and human health. Phytochem Rev., 8, 269-282(2009).

J. D. Hayes, M. O. Kelleher, I. M. Eggleston. The cancer chemopreventive actions of phytochemicals derived from glucosinolates. Eur J Nutr., 47, 73-88 (2008).

P. J. Thornalley, IARC Workgroup. Cruciferous Vegetables, Isothiocyanates and Indoles. IARC Handbook on Chemoprevention of Cancer., 1–261 (2004).

T. A. Shapiro, J. W. Fahey, K. L. Wade, K. K. Stephenson, P. Talalay. Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiol Biomarkers Prevent., 7,1091-1100 (1998).

M. C. Myzak, P. A. Karplus, F. L. Chung, R. H. Dashwood. A Novel Mechanism of Chemoprotection by Sulforaphane Inhibition of Histone Deacetylase. Cancer Res., 64, 5767-5774(2004).

A. Seow, C. Y. Shi, F. L. Chung, D. Jiao, J. H. Hankin, H. P. Lee, G. A. Coetzee, M. C. Yu. Urinary total isothiocyanate (ITC) in a population-based sample of middle-aged and older Chinese in Singapore: relationship with dietary total ITC and glutathione S-transferase M1/T1/P1 genotypes. Cancer Epidemiol Biomarkers Prevent., 7, 775–781 (1998).

J. M. Cramer, M. Teran-Garcia, E. H. Jeffery. Enhancing sulforaphane absorption and excretion in healthy men through the combined consumption of fresh broccoli sprouts and a glucoraphanin-rich powder. Brit J Nut.,r 13,1–6 (2011).

. S. Agrawal, B. Winnik, B. Buckley, L. Mi, F. L. Chung, T. J. Cook. Simultaneous determination of sulforaphane and its major metabolites from biological matrices with liquid chromatography–tandem mass spectroscopy. J Chromatogr B., 840, 99–107 (2006).



  • There are currently no refbacks.

Copyright (c) 2016 M. Carmen Rodríguez-Hernández, Sonia Medina, Angel Gil-Izquierdo, Carmen Martínez-Ballesta, Diego A. Moreno

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.