Optimization of supervised self-organizing maps with genetic algorithms for classification electrophoretic profiles

Authors

  • Natalia Tomovska Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril & Methodius University, Skopje
  • Igor Kuzmanovski Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril & Methodius University, Skopje
  • Kiro Stojanoski Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril & Methodius University, Skopje

DOI:

https://doi.org/10.20450/mjcce.2014.436

Keywords:

disc electrophoresis, cerebrospinal fluid, protein analysis, supervised self-organizing maps

Abstract

Standard electrophoresis methods were used in the classification of analyzed proteins in cerebrospinal fluid from patients with multiple sclerosis. Disc electrophoresis was carried out for detection of oligoclonal IgG bands in cerebrospinal fluid on polyacrylamide gel, mainly with multiple sclerosis and other central nervous system dysfunctions. ImageMaster 1D Elite and GelPro specialized software packages were used for fast accurate image and gel analysis. The classification model was based on supervised self-organizing maps. In order to perform the modeling in automated manner genetic algorithms were used. Using this approach and a data set composed of 69 samples we were able to develop models based on supervised self-organizing maps which were able to correctly classify 83 % of the samples in the data set used for external validation.

References

O. Trenchevska, V. Aleksovski, D. Nedelkov and K. Stojanoski, Developing Novel Methods for Protein Analysis and Their Potential, Implementation in Di-agnosing Neurological Diseases, in: Advanced Topics in Neurological Disorder, chapter 7, pp. 129–158 (2012).

H. Link, Y. Huang, Oligoclonal bands in multiple scle-rosis cerebrospinal fluid: An update on methodology and clinical usefulness, J. of Neuroimmunol., 180, 17–28 (2006).

McDonald diagnostic criteria: C. H. Polman, S. C. Reingold, B. Banwell, M. Clanet, J. A. Cohen, M. Filippi, K. Fujihara, E. Havrdova, M. Hutchinson, L. Kappos, F. D. Lublin, X. Montalban, P. O'Connor, M. Sandberg-Wollheim, A. J. Thompson, E. Waubant, B. Weinshenker, J. S. Wolinsky, Annals of Neurology, Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. 69, 292–302 (2011).

A. Mitrevski, K. Stojanoski and P. Korneti, Detection of oligoclonal IgG bands in cerebrospinal fluid on polyacrylamide support media: Comparison of isoelectric focusing and disc electrophoresis, Acta Pharm., 3, 163–171, (2001).

F. Spiroski, K. Stojanoski, A. Mitrevski, Comparison of statistical cluster methods in electrophoretic protein pattern analysis, Acta Pharm., 55, 215–221 (2005).

L. Liao, D. Cheng, J. Wang, T. Losik, D. Duong, M. Gearing, H. Rees, J.-J. Lah, AI Levey, J. Peng, Proteo-mic characterization of postmortem amyloid plaques isolated by laser capture microdissection, J. Biol. Chem., 279, 37061–37068 (2004).

C. Sindic, M. Antwerpen and S. Goffette, The intrathe-cal humoral immune response: laboratory analysis and clinical relevance, Clin. Chem. Lab. Med., 39, 333–340 (2001).

W. W. Tourtellotte, A. R. Potvin, J. O. Fleming, K. N. Murthy, J. Levy, K. Syndulko, J. H. Potvin, Multiple sclerosis: measurement and validation of central nervous system IgG synthesis rate, Neurology, 30, 240–244 (1980).

C. J. M. Sandic, P. Monteyne, G. Bigaignon and E. C. Laterre, Polyclonal and oligoclonal IgA synthesis in the cerebrospinal fluid of neurological patients. An immunoaffinity-mediated capillary blot study, J. Neuroimmunol. 94 103–111(1994).

J. Vohradsky, Adaptive classification of two-dimensional gel electrophoretic spot patterns by neural networks and cluster analysis, Electrophoresis, 18, 2749–2754 (1997).

M. Kratzer, B. Ivandic, A. Fateh-Moghadam, Neuronal network analysis of serum electrophoresis, J. Clin. Pathol., 45, 612–615 (1992).

P. K. Hopke, X. H. Song, Classification of single parti-cles by neural networks based on the computer-controlled scanning electron microscopy data, Anal. Chim. Acta, 348, 375–388 (1997).

D. Wienke, Y. Xie, P. K. Hopke, Classification of airborne particles by analytical scanning electron micro¬scopy imaging and a modified Kohonen neural network (3MAP), Anal. Chim. Acta, 310, 1–14 (1995).

R. Goodacre, J. Pygall, D. B. Kell, Plant seed classification using pyrolysis mass spectrometry with unsupervised learning: The application of auto-associative and Kohonen artificial neural networks, Chemometr. Intell. Lab. Syst., 38, 69–83 (1997).

J. Zupan, M. Novič, Classification of multicomponent analytical data of olive oils using different neural net-works, Anal. Chim. Acta, 192, 219–234 (1994).

H. Yang, I. R. Lewis, P. R. Griffiths, Raman spectrometry and neural networks for the classification of wood types. 2. Kohonen self-organizing maps, Spectrochim. Acta, 55, 2783–2791 (1999).

Y. V. Heyden, P. Vankeerberghen, M. Novic, J. Zupan, D. L. Massart, The application of Kohonen neural networks to diagnose calibration problems in atomic absorption spectrometry, Talanta, 51, 455–466 (2000).

I. V. Pletnev, V. V. Zernov, Classification of metal ions according to their complexing properties: A data-driven approach, Anal. Chim. Acta, 455, 131–142 (2002).

F. Vandeerestraeten, C. Wojciechowski, N. Dupuy, J. P. Huvenne, Recognition of starch origin and modifications by chemometrics spectral data processing, Analysis, 26, 57–62 (1998).

V. Tanevska, I. Kuzmanovski, O. Grupče, Provenance determination of Vinica terra cotta icons using self-organising maps, Annali di Chimica, 97, 541–552 (2007).

M. Kolehmainen, P. Rönkkö, O. Raatikainen, Monitor-ing of yeast fermentation by ion mobility spectrometry measurement and data visualisation with Self-Organizing Maps, Anal. Chim. Acta, 484, 93–100 (2003).

C. Ruckebusch, L. Duponechel, J.-P. Huvenne, Degree of hydrolysis from mid-infrared spectra, Anal. Chim. Acta, 446, 255–266 (2001).

R. Todeschini, D. Galvagni, J. L. Vílchez, M. del Olmo, N. Navas, Kohonen artificial neural networks as a tool for wavelength selection in multicomponent spectrofluorimetric PLS modelling: Application to phenol, o-cresol, m-cresol and p-cresol mixtures, Trends Anal. Chem., 18, 93–98 (1999).

T. Kohonen, Self-Organizing Maps, 3rd Edition, Springer, Berlin, 2001.

J. Zupan, M. Novič, I. Raisánchez, Kohonen and counterpropagation artificial neural networks in analytical chemistry, Chemometr. Intell. Lab. Syst., 38, 1–23 (1997).

J. Zupan, J. Gasteiger, Neural Networks in Chemistry and Drug Design, WCH, Weinheim, 1999.

I. Kuzmanovski, M. Trpkovska, B. Šoptrajanov, Determination of the composition of human urinary calculi composed of whewellite, weddellite and carbonate apatite using artificial neural networks, J. Mol. Struct., 744–747, 833–838 (2005).

I. Kuzmanovski, S. Dimitrovska-Lazova, S. Aleksovska, Classification of perovskites with supervised self-organizing maps, Anal. Chim. Acta, 595, 182–189 (2007).

http://gel-pro-analyzer.software.informer.com/

M. Otto, Chemometrics, 2nd Edition, Wiley, Weinheim, 2007.

J. Holland, Outline for a Logical Theory of Adaptive Systems, J. Comput. Machinery 3, 297-314 (1962).

B. Kermani, S. Schiffman, H. T. Nagle, IEEE Trans. Biomed. Eng., 46, 429–439 (1999).

C. Henderson, W. Potter, R. McClendon, G. Hoogen-boom, Predicting Aflatoxin Contamination in Peanuts: A Genetic Algorithm/Neural Network Approach, Appl. Intell., 12, 183–192 (2000).

K. Hasegawa, Y. Miyashita, K. Funatsu, GA Strategy for Variable Selection in QSAR Studies: GA-Based PLS Analysis of Calcium Channel Antagonists, J. Chem. Inf. Comput. Sci., 37, 306–310 (1997).

B. M. Smith, P. J. Gemperline, Wavelength selection and optimization of pattern recognition methods using the genetic algorithm, Anal. Chim. Acta, 423, 167–177 (2000).

S. S. So, M. Karplus, Genetic Neural Networks for Quantitative Structure−Activity Relationships: Im-provements and Application of Benzodiazepine Affinity for Benzodiazepine/GABAA Receptors, J. Med. Chem., 39, 5246–5256 (1996).

R. Leardi, A. Lupiáñez González, Genetic algorithms applied to feature selection in PLS regression: How and when to use them, Chemom. Intell. Lab. Syst., 41, 195–207 (1998).

H. Yoshida, R. Leardi, K. Funatsu, K. Varmuza, Feature selection by genetic algorithms for mass spectral classifiers, Anal. Chim. Acta, 446, 485–494 (2001).

R. W. Kennard, L. A. Stone, Computer aided design of experiments, Technometrics, 11, 137–148 (1969).

Downloads

Published

2014-05-02

How to Cite

Tomovska, N., Kuzmanovski, I., & Stojanoski, K. (2014). Optimization of supervised self-organizing maps with genetic algorithms for classification electrophoretic profiles. Macedonian Journal of Chemistry and Chemical Engineering, 33(1), 65–71. https://doi.org/10.20450/mjcce.2014.436

Issue

Section

Analytical Chemistry