Inhibition of copper corrosion in chloride solution by caffeine isolated from black tea
DOI:
https://doi.org/10.20450/mjcce.2014.441Keywords:
adsorption isotherm, caffeine, copper, corrosion, inhibitionAbstract
Caffeine (1,3,7-trimethylxanthine) was isolated from black tea and characterized using different physical methods (determination of melting point, thin layer chromatography, FTIR spectroscopy and UV spectrophotometry). The corrosion inhibition performance of the caffeine isolate on copper corrosion in neutral 0.5 mol L-1 NaCl solution was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The obtained results show that caffeine effectively inhibited the corrosion reaction in the chloride solution with inhibition efficiency up to » 92 %. Furthermore, caffeine was found to function essentially as a cathodic inhibitor by adsorption on the copper surface according to the Langmuir adsorption isotherm. The adsorption free energy of » –37 kJ mol-1 indicates strong adsorption of the caffeine on the metal surface. Quantum chemical computations and molecular dynamics simulations were adapted to understudy the adsorption of a single caffeine molecule as well as a polymeric cluster of caffeine molecules on a model Cu surface at a molecular level and show good agreement with the experimental findings.
References
M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE International Cebelcor, Houston, 1974.
H. H. Strehblow, B. Titze, The investigation of the passive behaviour of copper in weakly acid and alka-line solutions and the examination of the passive film by esca and ISS. Electrochim. Acta, 25, 839–850 (1980).
M. R. G. de Chialvo, R. C. Salvarezza, D. Vasquez Moll, A. J. Arvia, Kinetics of passivation and pitting corrosion of polycrystalline copper in borate buffer solutions containing sodium chloride. Electrochim. Acta, 30, 1501–1511 (1985).
W. Qafsaoui, G. Mankowski, F. Dabosi, The pitting corrosion of pure and low alloyed copper in chloride containing borate buffered solutions. Corros. Sci., 34, 17–25 (1993).
J. P. Duthil, G. Mankowski, A. Giusti, The synergetic effect of chloride and sulphate on pitting corrosion of copper. Corros. Sci., 38, 1839–1849 (1996).
P. B. Raja, M. G. Sethuraman, Natural products as corrosion inhibitor for metals in corrosive media – A review. Matt. Lett., 62, 113–116 (2008).
M. Sangeetha, S. Rajendran, T. S. Muthumegala, A. Krishnaveni, Green corrosion inhibitors – An over-view. Mat. Prot., 52, 3–19 (2011).
E. E. Oguzie, Corrosion inhibition of aluminium in acidic and alkaline media by Sansevieria trifasciata extract. Corros. Sci., 49, 1527–1539 (2007).
M. Kliškić, J. Radošević, S. Gudić, V. Katalinić, Aqueous extract of Rosmarinus offinalis L. as inhibitor of Al-Mg alloy corrosion in chloride solution. J. Appl. Electrochem., 30, 823–830 (2000).
J. S. Chauhan, Anticorrosion behaviour of Zenthoxy-lum alatum extract in acidic media. Asian J. Chem., 21, 1975–1978 (2009).
H. H. Rehan, Corrosion control by water-soluble ex-tracts from leaves of economic plants. Materialwiss. Werkst., 34, 232–237 (2003).
M. A. Quraishi, A. Singh, V. K. Singh, D. K. Yadav, A. K. Singh, Green approach to corrosion inhibition of mild steel in hydrochloric acid and sulphuric acid so-lutions by the extract of Murraya koenigii leaves. Mat. Chem. Phys., 122, 114–122 (2010).
A. Y. El-Etre, M. Abdallah, Z. E. El-Tantawy, Corro-sion inhibition of some metals using lawsonia extract. Corros. Sci., 47, 385–395 (2005).
A. Finger, S. Kuhr, U. H. Engelhardt, Chromatography of tea constituents, J. Chromatogr. A, 624, 293–315 (1992).
P. L. Fernández, M. J. Martín, A. G. González, F. Pablos, HPLC determination of catechins and caffeine in tea. Differentiation of green, black and instant teas. Analyst, 125, 421–425 (2000).
A. Mumin, K. F. Akhter, Z. Abedin, Z. Hossain, Deter-mination and characterization of caffeine in tea, coffee and soft drinks by solid phase extraction and high performance liquid chromatography (SPE–HPLC), Malaysian J. Chem., 8, 45–51 (2006).
M. Guru, H. Icen, Obtaining of caffeine from Turkish tea fiber and stalk wastes. Bioresource Technol., 94, 17–19 (2004).
A. Smith, Effect of caffeine on human behaviour. Food Chem. Toxicol., 40, 1243–1255 (2002).
M. J. Glade, Caffeine – not just a stimulant. Nutrition, 26, 932–938 (2010).
N. Anthony, E. Malarvizhi, P. Maheshwari, S. Rajen-dran, N. Palaniswamy, Corrosion inhibition by caffeine – Mn2+ system. Indian J. Chem. Technol., 11, 346–350 (2004).
S. Rajendran, A. J. Amalraj, M. J. Joice, N. Anthony, D. C. Trivedi, M. Sundaravadivelu, Corrosion inhibi-tion by the caffeine – Zn2+ system. Corros. Rev., 22, 233–248 (2004).
T. Fallavena, M. Antonow, R. S. Goncalves, Caffeine as non-toxic corrosion inhibitor for copper in aqueous solutions of potassium nitrate. Appl. Surf. Sci., 253, 566–571 (2006).
L. G. de Trindade, R. S. Goncalves, Evidence of caf-feine adsorption on a low-carbon steel surface in etha-nol. Corros. Sci., 51, 1578–1583 (2009).
B. J. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys., 92, 508–517 (1990).
B. J. Delley, From molecules to solids with the Dmol3 approach. J. Chem. Phys., 113, 7756–7764 (2000).
C. J. Casewit, K. S. Colwell, A. K. Rappé, Application of universal force field to organic molecules. J. Am. Chem. Soc., 114, 10035–10046 (1992).
C. J. Casewit, K. S. Colwell, A. K. Rappé, Application of universal force field to main group elements. J. Am. Chem. Soc., 114, 10046–10053 (1992).
H. V. Aeschbacher, J. Atkinson, B. Domahidy, The effect of caffeine on barbiturate sleeping time and brain level. J. Pharmacol. Exp. Ther., 192, 635–641 (1975).
K. Venkata Sowmya, K. Ravishankar, D. Peer Basha, G.V.N. Kiranmayi, Estimation of caffeine and sodium benzoate in caffeine and sodium benzoate injection by isoabsorption method (isobestic method). IJPCBS, 1, 26–31 (2011).
O. E. Barcia, O. R. Mattos, N. Pebere, B. Tribollet, Mass-transport study for the electrodissolution of copper in 1 M hydrochloric acid solution by impedance. J. Electrochem. Soc., 140, 2825–2832 (1993).
A. L. Bacarella, J. C. Griess, The anodic dissolution of copper in flowing sodium chloride solutions between 25° and 175°C. J. Electrochem. Soc., 120, 459–465 (1973).
F. K. Crundwell, The anodic dissolution of copper in hydrochloric acid solutions. Electrochim. Acta, 37, 2707–2714 (1992).
H. P. Lee, K. Nobe, Kinetics and mechanisms of Cu electrodissolution in chloride media. J. Electrochem. Soc., 133, 2035–2043 (1986).
C. Deslouis, B. Tribollet, G. Mengoli, M. M. Musiani, Electrochemical behaviour of copper in neutral aerated chloride solution. I. Steady-state investigation. J. Appl. Electrochem., 18, 374–383 (1988).
H. Otmačić, E. Stupnišek-Lisac, Copper corrosion inhibitors in near neutral media, Electrochim. Acta. 48, 985–991 (2003).
G. Kear, B.D. Barker, F. C. Walsh, Electrochemical corrosion of unalloyed copper in chloride media – A critical review. Corros. Sci., 46, 109–135 (2004).
I. D. Raistrick, D. R. Franceschetti J. R. Macdonald, Theory, in: Impedance Spectroscopy, E. Barsoukov, J. R. Macdonald (Eds.), J. Wiley & Sons, Inc., New Jer-sey, 2005, pp. 27–128.
H. Ma, S. Chen, L. Niu, S. Zhao, S. Li, Inhibition of copper corrosion by several Schiff bases in aerated halide solutions. J. Appl. Electrochem., 32, 65–72 (2002).
E. Sherif, S.-M. Park, Inhibition of copper corrosion in 3.0% NaCl solution by N-Phenyl-1,4-phenylenediamine. J. Electrochem. Soc., 152, B428–B433 (2005).
E. Sherif, S.-M. Park, Inhibition of copper corrosion in acidic pickling solutions by N-phenyl-1,4-phenylene-diamine. Electrochim. Acta, 51, 4665–4673 (2006).
K. F. Khaled, Guanidine derivative as a new corrosion inhibitor for copper in 3% NaCl solution. Mater. Chem. Phys., 112, 104–111 (2008).
F. M. Donahue, K. Nobe, Theory of organic corrosion inhibitors: Adsorption and linear free energy relation-ships. J. Electrochem. Soc., 112, 886–891 (1965).
E. Khamis, F. Belluci, R. M. Latanision, E.S.H. El-Ashry, Acid corrosion inhibition of nickel by 2-(tri-phenosphoranylidene) succinic anhydride. Corrosion, 47, 677–686 (1991).
S. Martinez, I. S. Stagljar, Correlation between the molecular structure and the corrosion inhibition efficiency of chestnut tannin in acidic solutions. THEOCHEM, 640, 167 (2003).
D. Turcio-Ortega, T. Pandiyan, J. Cruz, E. Garcia-Ochoa, Interaction of imidazoline compounds as a model for corrosion inhibition: DFT and electrochemical studies. J. Phys. Chem. C, 111, 9853–9866 (2007).
G. Gece, The use of quantum chemical methods in corrosion inhibitor studies. Corros. Sci., 50, 2981–2992 (2008).
I. B. Obot, N.O. Obi-Egbedi, Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole: Experimental and theoretical investigation. Corros. Sci., 52, 198–204 (2010).
K. F. Khaled, Molecular simulation, quantum chemical calculations and electrochemical studies for inhibition of mild steel by triazoles. Electrochim. Acta, 53, 3484–3492 (2008).
E. E. Oguzie, Y. Li, S. G. Wang, F. H. Wang, Under-standing corrosion inhibition mechanisms – experimental and theoretical approach. RSC Advances, 1, 866–873 (2011).
I. Bitsanis, J. J. Magda, M. Tirrell, H. T. Davis, Molecular dynamics of flow in micropores. J. Chem. Phys., 87, 1733–1750 (1987).
R. Khare, J. J. de Pablo, A. Yethiraj, Rheology of con-fined polymer melts. Macromolecules, 29, 7910–7918 (1996).
S. A. Gupta, H. D. Cochran, P. T. Cummings, Shear behavior of squalane and tetracosane under extreme confinement. I. Model, simulation method, and interfacial slip. J. Chem. Phys., 107, 10316–10326 (1997).
M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, London, 1987.
D. Hofmann, L. Fritz, J. Ulbrich, C. Schepers, M. Boehning, Detailed-atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane material. Macromol. Theory Simul., 9, 293–327 (2000).
Downloads
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.