Optimization and development of SPE-HPLC-DAD method for the determination of atrazine, malathion, fenitrothion and parathion pesticide residues in apple juice

Lenche Velkoska-Markovska, Biljana Petanovska-Ilievska


ultraviolet–diode array detection (UV-DAD) for the simultaneous determination of atrazine, malathion, fenitrothion, and parathion residues in apple juices has been developed. For the enrichment and cleanup of compounds of interest, Supelclean ENVI-18 SPE tubes were used. Separation and quantitative determination of the analytes were performed on a LiChrospher 60 RP-select B (125 mm × 4 mm, 5 μm, Merck) analytical column, the mobile phase consisting of acetonitrile/water (55/45, V/V) in isocratic elution with the following set values: flow rate of 1 ml/min, constant column temperature at 25 oC, and UV detection at 220 nm and 270 nm. The gathered values of the investigated pesticides from the apple juice samples were in the range 94.2 %–117.2 %.  


atrazine; malathion; fenitrothion; parathion; pesticide residues; SPE-HPLC-DAD; apple juice

Full Text:



Food and Agriculture Organization of the United Nations, International Code of Conduct on the Distribution and Use of Pesticides (2002). Retrieved on 2007-10-25.

T. Cserháti, M. Szőgyi, Chromatographic determination of pesticides in foods and food products, Eur. Chem. Bull., 1, 58–68 (2012).

J. Fenik, M. Tankiewicz, M. Biziuk, Properties and determination of pesticides in fruits and vegetables, Trends Anal. Chem., 30, 814–826 (2011).

B. Albero, C. Sanchez-Brunete, J. L. Tadeo, Determination of organophosphorus pesticides in fruit juices by matrix solid-phase dispersion and gas chromatography, J. Agric. Food Chem., 51, 6915–6921 (2003).

X. G. Chua, X. Z. Hub, H. Y. Yaoa, Determination of 266 pesticide residues in apple juice by matrix solid-phase dispersion and gas chromatography– mass selective detection, J. Chromatogr. A., 1063, 201–210 (2005).

S. C. Cunha, J. O. Fernandes, M.B.P.P. Oliveira, Fast analysis of multiple pesticide residues in apple juice using dispersive liquid–liquid microextraction and multidimensional gas chromatography– mass spectrometry, J. Chromatogr. A., 1216, 8835–8844 (2009).

J. H. Wang, Y. B. Zhang, X. L. Wang, Determination of multiclass pesticide residues in apple juice by gas chromatography–mass spectrometry with large-volume injection, J. Sep. Sci., 29 , 2330– 2337 (2006).

X. Hu, Y. Jianxin, Y. Zhigang, N. Lansun, L. Yanfei, W. Peng, L. Jing, H. Xin, C. Xiaogang, Z. Yibin, Determination of multiclass pesticide residues in apple juice by gas chromatography-mass selective detection after extraction by matrix solid- phase dispersion, J. AOAC Int., 87 , 972–985 (2004).

S. C. Cunha, J. O. Fernandes, A. Alves, M.B.P.P. Oliveira, Fast low-pressure gas chromatography– mass spectrometry method for the determination of multiple pesticides in grapes, musts and wines, J. Chromatogr. A., 1216, 119–126 (2009).

E. R. Attallah, D. A. Barakat, G. R. Maatook, H. A. Badawy, Validation of a quick and easy (QuECh- ERS) method for the determination of pesticides residue in dried herbs, J. Food. Agric. Environ., 10, 755–762 (2012).

S. H. Tseng, Y. J. Lin, H. F. Lee, S. C. Su, S. S. Chou, D. F. Hwang, A multiresidue method for determination 136 pesticides and metabolites in fruit and vegetables: Application of macroporous diatomaceous earth column, J. Food. Drug. Anal., 15, 316–324 (2007).

F. J. Schenck, V. Howard-King, Rapid solid phase extraction cleanup for pesticide residues in fresh fruits and vegetables, Bull. Environ. Contam. Toxicol., 63, 277–281 (1999).

K. Nantachit, L. Wongpayapkul, Determination of pesticide residue in vegetable juice, fruit juice and green tea solution in closed package, CMU. J. Nat. Sci., 6, 43–47 (2007).

R. P. Z. Furlani, K. M. Marcilio, F. M. Leme, S. A. V. Tfouni, Analysis of pesticide residues in sugarcane juice using QuEChERS sample preparation and gas chromatography with electron capture detection, Food Chem., 126, 1283–1287 (2011).

D. Perret, A. Gentili, S. Marchese, M. Sergi, G. D’Asceno, Validation of a method for the determination of multiclass pesticide residues in fruit juices by liquid chromatography/tandem mass spectrometry after extraction by matrix solid-phase dispersion, J. AOAC Int., 85, 724–730 (2002).

G. F. Pang, C. L. Fan, Y. M. Liu, Y. Z. Cao, J. J. Zhang, B. L. Fu, X. M. Li, Z. Y. Li, Y. P. Wu, Multi-residue method for the determination of 450 pesticide residues in honey, fruit juice and wine by double-cartridge solid-phase extraction/ gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry, Food Addit. Contam., 23, 777–810 (2006).

A. C. Borba da Cunha, M. J. Lopez de Alda, D. Barcelo, T. M. Pizzolato, J. H. dos Santos, Multianalyte determination of different classes of pesticides (acidic, triazines, phenyl ureas, anilines, organophosphates, molinate and propanil) by liquid chromatography-electrospray-tandem mass spectrometry, Anal. Bioanal. Chem., 378, 940–954 (2004).

A. Laganà, G. D’Ascenzo, G. Fago, A. Marino, Determination of organophosphorus pesticides and metabolites in crops by solid-phase extraction followed by liquid chromatography/diode array detection, Chromatographia, 46, 256–264 (1997).

V. Trajkovska, S. Petrovska-Jovanović, M. Cvetkovski, Development and optimization of a method for the determination of simazine, atrazine and propazine using solid-phase extraction and HPLC/ GC, J. Serb. Chem. Soc., 66, 199–204 (2001).

R. Jeannot, H. Sabik, E. Sauvard, E. Genin, Application of liquid chromatography with mass spectrometry combined with photodiode array detection and tandem mass spectrometry for monitoring pesticides in surface waters, J. Chromatogr. A., 879, 51–71 (2009).

P. Parrilla, J. L. M. Vidal, Determination of pesticide residues in water using LLE or SPE and HPLC/DAD detection, Anal. Lett., 30, 1719–1738 (1997).

R. Carabias-Martinez, E. Rodriguez-Gonzalo, M. J. Amigo Moran, J. Hernhdez-Mendez, Sensitive method for the determination of organophosphorus pesticides in fruits and surface waters by highperformance liquid chromatography with ultraviolet detection, J. Chromatogr., 607, 37–45 (1992).

N. Rosales-Conrado, M. E. León-González, L. V. Pérez-Arribas, L. M. Polo-Díez, Multiresidue determination of chlorophenoxy acid herbicides in human urine samples by use of solid-phase extraction and capillary LC–UV detection, Anal. Bioanal. Chem., 390 (2), 759–768 (2008).

X. H. Kong, Determination of Organophosphorous Pesticide Residues in Apple Juice Concentrate by Solid Phase Microextraction-Gas Chromatography, Food Science, 30, 196–200 (2009).

Y. Pico, C. Blasco, G. Font, Environmental and food applications of LC–tandem mass spectrometry in pesticide-residue analysis: an overview, Mass Spectrom. Rev., 23, 45–85 (2004).

Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EECText with EEA relevance.

C. Tomlin, The pesticide manual incorporating the agrochemicals handbook, 11th Ed., Crop Protection Publications, 1997, pp. 51–52, 271–274, 435– 436, 630–631, 787–788.

D. R. Jenkie, Chromatographic Method Validation: A Review of Current Practices and Procedures. I General Concepts and Guidelines, J. Liq. Chromatogr. Related Technol., 19, 737–757 (1996).

J. C. Miller, J. N. Miller, Statistics for analytical chemistry, 3rd Ed., Ellis Horwood Ptr Prentice Hall, 1993, 101–141.

Guidance document on pesticide residue analytical methods, European Commission, Directorate General Health and Consumer Protection, SANCO/ 825/00 rev. 8.1 (2010).

Guidance for AOAC standard method performance requirement (SMPR) documents (version 12.1) (2011).

DOI: http://dx.doi.org/10.20450/mjcce.2013.449


  • There are currently no refbacks.

Copyright (c) 2016 Lenche Velkoska-Markovska, Biljana Petanovska-Ilievska

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.