Polarized IR reflectance spectroscopy methods for the orientation of monoclinic single crystals: Tutton salts as a case example


  • Vladimir Ivanovski Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University Skopje




Polarized IR reflectance, Tutton salts, Orienting single crystal, Isosbestic point, Monoclinic crystals.


Investigation of polarized IR reflectance spectra of single crystals is important in the course of obtaining vibrational, optical and dielectric properties of solid state samples.  Diffraction X-ray methods are usually employed for crystal orientation. In this work, two IR reflectance methods are proposed as a supplement in testing the orientation of the b crystal axis and by that the ac crystal plane, in respect to the morphology of monoclinic single crystals. The methods were tested on two Tutton salt single crystals: K2Ni(SO4)2·6H2O and K2Ni(SeO4)2·6H2O and were further compared with the cross-polarization IR reflectance method. Both methods rely on the symmetry and optical properties of monoclinic single crystals. One of them takes into account the fact that one of the principal axes of the dielectric tensor is symmetry fixed, while the other employs the conditions for the appearance of an isosbestic-like point i.e. isosbestic-like region in the polarized IR reflectance spectra of single crystals with low symmetry.


V. Ivanovski, T.G. Mayerhöfer, J. Popp, Investigation of the peculiarities in the polarized reflectance spectra of some Tutton salt monoclinic single crystals using dispersion analysis Vib. Spectrosc., 44, 369-374 (2007).

V. Ivanovski, T.G. Mayerhöfer, J. Popp, V.M. Petruševski, Polarized IR reflectance spectra of the monoclinic single crystal K2Ni(SO4)2•6H2O: Dispersion analysis, dielectric and optical properties, Spectrochim. Acta A, 69, 629-641 (2008).

V. Ivanovski, T.G. Mayerhöfer, J. Popp, Dispersion analysis of polarized IR reflectance spectra of Tutton salts: The 3(SO42-) frequency region, Vib. Spectrosc., 47, 91-98 (2008).

V. Ivanovski, G. Ivanovski, Nearest-neighbour-interaction model in the coupled-optical-phonon-mode theory of the infrared dispersion in monoclinic crystals: Application to Tutton salt single crystal, Spectrochim. Acta A, 75, 1452-1461 (2010).

M. Bukleski, V. Ivanovski, V.M. Petruševski, IR specular reflectance spectra of KHSO4 single crystal—Dispersion analysis, Vib. Spectrosc., 57, 15-22 (2011).

Th.G. Mayerhöfer, H.H. Dunken, Single-crystal IR spectroscopic investigation on fresnoite, Sr-fresnoite and Ge-fresnoite, Vib. Spectrosc., 25, 185-195 (2001).

Th.G. Mayerhöfer, J. Popp, Employing spectra of polycrystalline materials for the verification of optical constants obtained from corresponding low-symmetry single crystals, Appl. Opt., 46, 327-334 (2007).

J. Baran, Polarized infrared spectra of KHSO4 and KDSO4 single crystals, J. Mol. Struct., 172, 1-13 (1988).

A.B. Kuz`menko, E.A. Tishchenko, V.G. Orlov, Transverse optic modes in monoclinic -Bi2O3, J. Phys.: Condens. Matter, 8, 6199-6212 (1996).

Th.G. Mayerhöfer, Modelling IR spectra of single-phase polycrystalline materials with random orientation in the large crystallites limit—extension to arbitrary crystal symmetry, J. Opt. A: Pure Appl. Opt., 4, 540-548 (2002).

T.G. Mayerhöfer, Modelling IR-spectra of single-phase polycrystalline materials with random orientation—a unified approach, Vib. Spectrosc., 35, 67-76 (2004).

T.G. Mayerhöfer, Z. Shen, R. Keding, J. L. Musfeldt, Optical isotropy in polycrystalline Ba2TiSi2O8: Testing the limits of a well established concept, Phys. Rev. B, 71, 184116 (2005).

M.E. Gunter, B. Twamley, A new method to determine the optical orientation of biaxial minerals: a mathematical approach, Can. Mineral., 39, 1701-1711 (2001).

C. Marín, E Diéguez, Orientation of Single Crystals by Back-Reflection Laue Pattern Simulation, World Scientific Publishing, Singapore, 1999.

K.H. Lloyd, An X-ray goniometer for producing accurately oriented crystal faces, J. Appl. Cryst., 12, 127-128 (1979).

J.C. Decius, R.M. Hexter, Molecular Vibrations in Crystals, McGraw-Hill, New York, 1977.

M. Born, E. Wolf, Principles of Optics, 7th(expanded) ed., Cambridge University Press, Cambridge, 1999.

M.V. Belousov, V.F. Pavinich, Infrared reflection spectra of monoclinic crystals, Opt. Spectrosc., 45, 771-774 (1978).

J.R. Aronson, A.G. Emslie, E.V. Miseo, E.M. Smith, P.F. Strong, Optical Constants of Monoclinic Anisotropic Crystals: Gypsum, Appl. Opt., 22, 4093-4098 (1983).

Th. G. Mayerhöfer, S. Weber, J. Popp, Simplified formulas for non-normal reflection from monoclinic crystals, Opt. Commun., 284, 719-723 (2011).

Th.G. Mayerhöfer, J. Popp, Modelling IR spectra of polycrystalline materials in the large crystallites limit—quantitative determination of orientation, J. Opt. A: Pure Appl. Opt., 8, 657-671 (2006).

C.T. Johnston, S.F. Agnew, D.L. Bish, Polarized Single-Crystal Fourier-Transform Infrared Microscopy of Ouray Dickite and Keokuk Kaolinite, Clays Clay Miner., 38, 573-583 (1990).

A.N. Winchell, H. Winchell, The Microscopical Characteristics of artificial Inorganic Solid Substances: Optical Properties of Artificial Minerals, Academic Press, New York, 1964.

V. Ivanovski, V.M. Petruševski, M.K. Gunde, The IR reflectance spectra of the ν3(SO42−) and ν4(SO42−) band regions of some Tutton salts using polarized radiation: testing the model dielectric function, Spectrochim. Acta A, 61, 67-76 (2005).

V. Ivanovski, V.M. Petruševski, Infrared reflectance spectra of some optically biaxial crystals: on the origin of isosbestic-like points in the polarized reflectance spectra, Spectrochim. Acta A, 61, 2057-2063 (2005).

V. Ivanovski, T.G. Mayerhöfer, J. Popp, Isosbestic-like point in the polarized reflectance spectra of monoclinic crystals—A quantitative approach, Spectrochim. Acta A, 68, 632-638 (2007).

T. Nowicka-Jankowska, Some properties of isosbestic points, J. Inorg. Nucl. Chem. 33, 2043-2050 (1971).

M.D. Cohen, E. Fischer, Isosbestic points, J. Chem. Soc., 3044-3052 (1962).

J. Brynestad, G.P. Smith, Isosbestic points and internally linear spectra generated by changes in solvent composition or temperature, J. Phys. Chem., 72, 296-300 (1968).

P.G. Hodgeson, J. Whitnall, C.H.L. Kennard, F.H. Moore, Potassium Hexaaquanickel(II) sulphate, H12K2NiO14S2 (neutron), Cryst. Struct.

Commun., 4, 713-716 (1975).

H. Euler, B. Barbier, A. Meents, A. Kirfel, Crystal structure of Tutton’s salts, K2[MII(H2O)6](SeO4)2, MII=Co, Ni, Zn and refinement of the crystal structure of potassium hexaaquamagnesium(II)selenate, K2[Mg(H2O)6](SeO4)2, Z. Kristallogr. NCS, 224, 351-354 (2009).

B.E A. Saleh, M.C. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc., New York, 1991, p. 214.

C. Punckt ,F.S. Merkt, H.H. Rotermund, Simple reflection anisotropy microscopy set-up for CO oxidation studies, New J. Phys. 9, 213 (2007).

V. Ivanovski, Th.G. Mayerhöfer, Vibrational spectra and dispersion analysis of K2Ni(SeO4)2•6H2O Tutton salt single crystal doped with K2Ni(SO4)2•6H2O, Spectrochim. Acta A, 114, 553-562 (2013).


Additional Files



How to Cite

Ivanovski, V. (2014). Polarized IR reflectance spectroscopy methods for the orientation of monoclinic single crystals: Tutton salts as a case example. Macedonian Journal of Chemistry and Chemical Engineering, 33(1), 27–38. https://doi.org/10.20450/mjcce.2014.477