Biocomposites based on polylactic acid and their thermal behavior after recycing

Vineta Srebrenkoska, Gordana Bogoeva Gaceva, Dimko Dimeski


In this study, rice-hull-filled poly(lactic acid) (PLA) biocomposites were prepared through the addition of 5 wt.% PLA-grafted-MA (CA) for the enhancement of adhesion between the polymer matrix and natural filler. The composites containing 30 wt.% rice hulls (RH) were prepared by compression molding, with particular attention given to the introduction of recycled PLA matrix, as well as to the possibility of the recycling and reuse of PLA/RH biocomposites. For all biocomposites, produced from neat polymer and RH and those produced after the recycling of PLA/RH composites, the mechanical and thermal properties were analyzed and compared to those of a commonly used thermoplastic based-polymer, polypropylene (PP), containing the same reinforcement. Thermal stability of biocomposites based on recycled PLA matrix and of the new composites produced from recycled ones was practically unchanged. Introduction of the recycled PLA matrix into biocomposites resulted in decreased flexural modulus and strengths of about 50%. Utilization of the mixture obtained after the thermal-mechanical recycling of the whole biocomposite resulted in a composite with slightly increased flexural modulus and decreased flexural strength.

The obtained results have shown that rice-hull-filled poly(lactic acid) biocomposites could be recycled and utilized for the production of new eco-materials with acceptable thermal and mechanical properties. Namely, the results for flexural strength and modulus of the recycled biocomposite samples are comparable to those of conventional formaldehyde wood medium density fiberboards used as construction elements for indoor applications.


Keywords:  biocomposites, polylactic acid, polypropylene, rice hulls, compression moulding.


biocomposites, poly (lactic acid), polypropylene, rice hulls, compression moulding

Full Text:



Y. Chen, L. S. Chiparus, I. Negulescu, D. V. Parikh, T. A. Calamari, Natural Fibers for Automotive Non-woven Composites, J. of Ind. Text. 35, 1, 47–61 (2005).

G. Bogoeva Gaceva, D. Dimeski, V. Srebrenkoska, Biocomposites based on PLA and kenaf fibers: Effect of fibrillated celulose, Maced. J. Chem. Chem. Eng. 32 (2), 331–335 (2013).

Seung-Hwan Lee, Siqun Wang, Biodegradable poly-mers/bamboo fiber biocomposite with bio-based cou-pling agent, Compos. Part A 37, 80–91 (2006).

K. Oksman, High quality flax fibre composites manufactured by the resin transfer moulding process, J. Reinf. Plast. Compos. 20 (7), 621 (2001).

K. Oksman, M. Skrifvars and J. F. Selin, Natural fibers as reinforcement in polylactic acid (PLA) composites, Compos. Sci. and Techn. 63, 1317–1324 (2003).

G. Bogoeva Gaceva, A. Bužarovska, Rapid method for evaluation of cure kinetics of thermoseting polymers, Maced. J. Chem. Chem. Eng. 32 (2), 337–344 (2013).

K. Oksman, Mechanical properties of natural fibre mat reinforced thermoplastics, Appl. Compos. Mat. 7, 403–414 (2000).

S. Serizawa, K. Inoue, M. Iji, Kenaf-fiber-reinforced poly(lactic acid) used for electronic products, J. App. Polym. Sci. 100, 618–624 (2006).

Z. Xia, W. A. Curtin, and T. Okabe, Shear-lag versus finite element models for stress transfer in fiber-reinforced composites, Compos. Sci. Technol. 62, 1279 (2002).

H. S. Yang, D. J. Kim, J. K. Lee, H. J. Kim, J. Y. Jeon and C. W. Kang, Possibility of using waste tire composites reinforced with rice hulls as construction materials, Biores. Technol. 95, 61–65 (2004b).

A. K. Mohanty, L. T. Drzal, and M. Misra, Engineered natural fiber reinforced polypropylene composites: influence of surface modifications and novel powder impregnation processing, J. Adhes. Sci. Tech. 16, 999 (2002).

T. J. Keener, R. K. Stuart, and T. K. Brown, Maleated coupling agents for natural fibre composites, Compos., Part A 35, 357 (2004).

A. N. Netravali and S. Chabba, Composites get greener, Mater. Today 6(4), 22 (2003).

V. Srebrenkoska, G. Bogoeva Gaceva, D. Dimeski, Preparation and recycling of polymer eco-composites, I. Comparison of the conventional molding techniques for preparation of polymer eco-composites, Maced. J. Chem. Chem. Eng. 28 (1), 99–109 (2009).

M. Avella, M. Cocca, M. Emanuela Errico, G. Gentile, Polyvinyl alcohol biodegradable foams containing cellulose fibres, J. Cell. Plast. 48 (5),459–470 (2012). This is the official web site of the Cargill Dow LLC. (Accessed 2013).

M. Avella, G. Bogoeva-Gaceva, A. Bužarovska, M. E. Errico, G. Gentile, A. Grozdanov, Poly(lactic acid)-based biocomposites reinforced with kenaf fibers, J. Appl. Polym. Sci. 108, 3542–3551 (2008).

M. Avella, G. Bogoeva-Gaceva, A. Bužarovska, M. E. Errico, G. Gentile, A. Grozdanov, Poly(3-hydroxy-butyrate-co-3-hydroxyvalerate-based biocomposites re¬inforced with kenaf fibers. J. Appl. Polym. Sci. 104, 3192–3200 (2007).

B. Dimzoski, G. Bogoeva-Gaceva, G. Gentile, M. Avella, A. Grozdanov, Polypropylene based eco-composites filled with agricultural rice hulls waste. Chem. Biochem. Eng. Quarterly. 23 (2), 225–230 (2009).

G. Bogoeva-Gaceva, A. Grozdanov, and A. Bužarovska, Eco-friendly polymer composites based on poly¬propylene and kenaf fibers, Proceedings of the 3rd International Conference on Eco Composites, Royal Institute of Technology, Stockholm, Sweden, June 20–21, 2005.

A. Grozdanov, A. Buzarovska, G. Bogoeva-Gaceva, M. Avella, M. E. Errico and G. Gentille, Rice hulls as an alternative reinforcement in polypropylene composites, Agron. Sustain. Dev. 26, 251–255 (2006).

ECO-PCCM, FP6-INCO-CT-2004-509185.

A. Grozdanov, A. Bužarovska, G. Bogoeva-Gaceva, M. Avella, M. E. Errico, G. Gentile, Nonisothermal crystal¬lization of kenaf fiber/polypropylene composites, Polym. Eng. and Sci. 47, 745–749 (2007).

B. Dimzoski, G. Bogoeva-Gaceva, G. Gentile, M. Avella, M. E. Errico, V. Srebrenkoska, Preparation and characterization of poly(lactic acid)/rice hulls based biodegradable composites, J. Polym. Eng. 28, 369–384 (2008).

G. Bogoeva-Gaceva, A. Grozdanov, A. Buzarovska, Nonisothermal crystallization of maleic anhydride grafted PP: comparison of different kinetic models, Proceedings of the 5th International Conference of the Chemical Societies of South-East European Countries ICOSECS-5, September 10–14, Ohrid, Macedonia, 2006, pp. 619.

G. Bogoeva-Gaceva, A. Grozdanov, B. Dimzoski, Analysis of the reaction of modified polypropylene in melt, Proceedings of European Polymer Congress EPF, July 2–6, Portorož, 2007.

A. Bužarovska, G. Bogoeva-Gaceva, A. Grozdanov, M. Avella, Crystallization behavior of polyhydroxybutyrate in model composites with kenaf fibers, J. Appl. Polym. Sci. 102 (1), 804–809 (2006).

A. R. Sanadi, J. F. Hunt, D. F. Caulfield, G. Kovacs-vologyi, and B. Destree, High fiber-low matrix composites: kenaf fiber/polypropylene, Proceedings of the 6th International Conference on Woodfiber-Plastic Composites, Madison, Wisconsin, May 15–16, 2001.

H. S. Kim, H. S. Yang, H. J. Kim, H. J. Park, Thermo-gravimetric analysis of rice husk flour filled thermoplastic polymer composites, J. Therm. Anal. Calorim. 76, 395–404 (2004).

R. Avolio, I. Bonadies, D. Capitani, M. E. Errico, G. Gentile, M. Avella, A multitechnique approach to assess the effect of ball milling on cellulose, Carbohyd. Polym. 87 (1), 265–273 (2012).

S. H. Lee, S. Wang, Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent, Compos., Part A 37, 80–91 (2006).



  • There are currently no refbacks.

Copyright (c) 2016 Vineta Srebrenkoska, Gordana Bogoeva Gaceva, Dimko Dimeski

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.