A computational study on a series of phenanthrene and phenanthroline based potential organic photovoltaics
DOI:
https://doi.org/10.20450/mjcce.2017.1199Keywords:
phenanthrene, phenanthroline, TADF, organic solar cells, NLOAbstract
A series of phenanthrene and phenanthroline derivatives were considered computationally by the application of Density Functional Theory at the B3LYP/6-31++G(d,p) level to investigate their potential usage as organic solar cell components, thermally activated delayed fluorescence and nonlinear optic compounds. The structures were constructed as a D-π-A motif in order to increase the ability to achieve intramolecular charge transfer enabling them to act as organic semiconductors. The inter-frontier energy gap of all compounds was found to be in the range of semiconductors. The thermally activated delayed fluorescence (TADF) properties of the compounds were also discussed in relation to the results obtained by TD-DFT calculations. Some of them possessed very narrow triplet-singlet transition energy leading to future TADF applications. Moreover, the nonlinear optic characteristics of all compounds were investigated through calculations of the total molecular dipole moment (μtot), linear polarizability (αtot) and hyperpolarizability (βtot). The results indicate the potential nonlinear optic property of all of the systems.
References
A. S. Bagher, Introduction to Organic Solar Cells, Sustainable Energy 2, 85–90 (2014).
H. Spanggaard, F. C. Krebs, A brief history of the development of organic and polymeric photovoltaic's, Sol. Energy Mater. Sol. Cells 83, 125–146 (2004).
C. Brabec, V. Dyakanov, J. Parisi, N. S Sariciftci, Organic Photovoltaics: Concepts and Realization, Springer, New York, 2003.
H. Hoppe, N. S. Sariciftci, Organic solar cells: an overview, J. Mater. Res. 19, 1924–1945 (2004).
G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nature Mater. 4, 864–868 (2005).
H. N. Kim, Z. Q. Guo, W. H. Zhu, J. Y. Yoon, H. Tian, Recent progress on polymer-based fluorescent and colorimetric chemosensors, Chem. Soc. Rev. 40, 79–93 (2011).
N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Photo induced electron transfer from a conducting polymer to buckminsterfullerene, Science 258, 1474–1476 (1992).
Y. Lin, Q. He, F. Zhao, L. Huo, J. Mai, X. Lu, C. J. Su, T. Li, J. Wang, J. Zhu, Y. Sun, C. Wang, X. Zhan, A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency, J. Am. Chem. Soc. 138, 2973–2976 (2016).
S. H. Liao, H. J. Jhuo, Y. S. Cheng, S. A. Chen, Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance, Adv. Mater. 25, 4766–4771 (2013).
M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency, Adv. Mater. 18, 789–794 (2006).
J. A. Love, C. M. Proctor, J. Liu, C. J. Takacs, A. Sharenko, T. S. van der Poll, A. J. Heeger, G. C. Bazan, T.-Q. Nguyen, Film morphology of high efficiency solution-processed small-molecule solar cells, Adv. Funct. Mater. 23, 5019–5026 (2013).
L. Liang, J.-T. Wang, X. Xiang, J. Ling, F.-G. Zhao, W.-S. Li, Influence of moiety sequence on the performance of small molecular photovoltaic materials, J. Mater. Chem. A 2, 15396–15405 (2014).
B. Kan, Q. Zhang, M. Li, X. Wan, W. Ni, G. Long, Y. Wang, X. Yang, H. Feng, Y. Chen, Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%, J. Am. Chem. Soc. 136, 15529–15532 (2014).
B. Kan, M. Li, Q. Zhang, F. Liu, X. Wan, Y. Wang, W. Ni, G. Long, X. Yang, H. Feng, Y. Zuo, M. Zhang, F. Huang, Y. Cao, T. P. Russell, Y. Chen, A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency, J. Am. Chem. Soc. 137, 3886–3893 (2015).
T. L. Nguyen, H. Choi, S. J. Ko, M. A. Uddin, B. Walker, S. Yum, J. E. Jeong, M. H. Yun, T. J. Shin, S. Hwang, J. Y. Kim, H. Y. Woo, Semi-crystalline photo-voltaic polymers with efficiency exceeding 9% in a 300 nm thick conventional single-cell device, Energy Environ. Sci. 7, 3040–3051 (2014).
J. Lu, J. Peng, Y. Wang, J. Yuan, C. Sheng, H.-Q. Wang, W. Ma, Benzo[1,2-b:4,5-b0]dithiophene-fumaro-nitrile-based D-A type copolymers with different p-bridges: synthesis, characterization and photovoltaic properties, Synth. Met. 188, 57–65 (2014).
Z. Du, W. Chen, M. Qiu, Y. Chen, N. Wang, T. Wang, M. Sun, D. Yu, R. Yang, Utilizing alkoxyphenyl substituents for side-chain engineering of efficient benzo[1,2-b:4,5-b']dithiophene-based small molecule organic solar cells, Phys. Chem. Chem. Phys. 17, 17391–17398 (2015).
W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133–1138 (1965).
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.
A. D. Becke, Density-functional exchange-energy approximationwith correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).
C. Lee, W. Yang, R.G. Parr, Development of the Colle–Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).
M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, Molecular excitation energies to high-lying bound states from timedependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 108, 4439–4449 (1998).
J. A. Mikroyannidis, D. V. Tsagkournos, S. S. Sharma, Y. K. Vijay, G. D. Sharma, Low band gap conjugated small molecules containing benzobisthiadiazole and thienothiadiazole central units: synthesis and application for bulk heterojunction solar cells. J Mater Chem 21, 4679–4688 (2011).
P. Sonar, S. P. Singh, Y. Li, M. S. Soh, A. Dodabalapur, A low-bandgap diketopyrrolopyrrole-benzothiadiazole-based copolymer for high-mobility ambipolar organic thin-film transistors. Adv Mater. 22, 5409–5413 (2010).
H. Tian, J. Shi, S. Dong, D. Yan, L. Wang, Y. Geng, F. Wang, Novel highly stable semiconductors based on phenanthrene for organic field-effect transistors, Chem. Commun. 3498–3500 (2006).
C. Yang, H. Scheiber, E. J. W. List, J. Jacob, K. Mu, Polyphenylene and poly(phenylenevinylene) analogues, Macromolecules 39, 5213–5221 (2006).
B. N. Boden, K. J. Jardine, A. C. W. Leung, M. J. MacLachlan, Tetraalkoxyphenanthrene: a new precursor for luminescent conjugated polymers, Org. Lett. 8, 1855–1858 (2006).
C. R. Luman, F. N. Castellano, Phenanthroline Ligands in Comprehensive Coordination Chemistry II, Elsevier, Pergamon, 2003.
M. Correa-Ascencio, E. K. Galvan-Miranda, F. Rascón-Cruz, O. Jiménez-Sandoval, S. J. Jiménez-Sandoval, R. Cea-Olivares, V. Jancik, R. A. Toscano, V. García-Montalvo, Lanthanide(III) complexes with 4,5-bis(diphenylphosphinoyl)-1,2,3-triazolate and the use of 1,10-phenanthroline as auxiliary ligand, Inorg. Chem. 49, 4109–4116 (2010).
J. R. Zheng, N. Ren, J. J. Zhang, D. H. Zhang, L. Z. Yan, Y. Li, Crystal Structures and luminescent and thermal properties of lanthanide complexes with 3,5-diisopropylsalicylic acid and 1,10-phenanthroline, J. Chem. Eng. Data 57, 2503–2510 (2012).
S. H. Fan, A. G. Zhang, C. C. Ju, L. H. Gao, K. Z. Wang, A Triphenylamine-grafted imidazo[4,5-f] [1,10]phenanthro¬line ruthenium(II) complex: Acid−base and photoelectric properties, Inorg. Chem. 49, 3752–3763 (2010).
W. D. Callister, Materials Science and Engineering–An Introduction, John Wiley and Sons, Inc. USA, 2007.
T. Nakagawa, S. Y. Ku, K. T. Wong, C. Adachi, Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor–acceptor structure, Chem. Commun. 48, 9580–9582 (2012).
G. Mehes, H. Nomura, Q. Zhang, T. Nakagawa, C. Adachi, Enhanced electroluminescence efficiency in a spiro-acridine derivative through thermally activated delayed fluorescence, Angew. Chem. Int. Ed. 51, 11311–11315 (2012).
K. Nasu, T. Nakagawa, H. Nomura, C. J. Lin, C. H. Cheng, M. R. Tseng, T. Yasuda, C. Adachi, A highly luminescent spiro-anthracenone-based organic light-emitting diode exhibiting thermally activated delayed fluorescence, Chem. Commun. 49, 10385–10387 (2013).
N. J. Turro, Modern Molecular Photochemistry, Univer-sity Science Books, 1991.
J. Li, Q. Zhang, H. Nomura, H. Miyazaki, C. Adachi, Thermally activated delayed fluorescence from nπ* to nπ* up-conversion and its application to organic light- emitting diodes, Appl. Phys. Lett. 105, 013301–013304 (2014).
T. Yanai, D. P. Tew, N. C. Handy, A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chem. Phys. Lett. 393, 51–57 (2004).
Y. X. Sun, Q. L. Hao, W. X. Wei, Z. X. Yu, L. D. Lu, X. Wang, Y. S. Wang, Experimental and density functional studies on 4-(3,4-dihydroxybenzylideneamino)anti¬pyrine, and 4-(2,3,4-trihydroxybenzylideneamino)anti¬pyrine, J. Mol. Struct.:Theochem 904, 74–82 (2009).
C. Andraud, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot, A. Collet, Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives, J. Am. Chem. Soc. 116, 2094–2102 (1994).
V. M. Geskin, C. Lambert, J. L. Bredas, Origin of high second- and third-order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions: the remarkable role of polarized aromatic groups, J. Am. Chem. Soc. 125, 15651–15658 (2003).
M. Nakano, H. Fujita, M. Takahata, K. Yamaguchi, Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: Toward an understanding of structure−property relation in NLO responses of fractal antenna dendrimers, J. Am. Chem. Soc. 124, 9648–9655 (2002).
D. Sajan, H. Joe, V. S. Jayakumar, J. Zaleski, Structural and electronic contributions to hyperpolarizability in methyl p-hydroxy benzoate, J. Mol. Struct. 785, 43–53 (2006).
R. Zhang, B. Du, G. Sun, Y. X. Sun, Experimental and theoretical studies on o-, m- and p-chlorobenzyl¬idene-aminoantipyrines, Spectrochim. Acta A 75, 1115–1124 (2010).
D. A. Kleinman, Nonlinear dielectric polarization in optical media, Phys. Rev. 126, 1977–1979 (1962).
K. S. Thanthiriwatte, K. M. Nalin de Silva, Non-linear optical properties of novel fluorenyl derivatives – ab initio quantum chemical calculations, J. Mol. Struct.:Theochem 617, 169–175 (2002).
H. Tanak, K. Pawlus, M. K. Marchewka, A. Pietraszko, Structural, vibrational and theoretical studies of anilinium trichloroacetate: New hydrogen bonded molecular crystal with nonlinear optical properties, Spectrochim. Acta Part A, 118, 82–93 (2014).
E. Scrocco, J. Tomasi, Topics in Current Chemistry, vol. 7, Springer, Berlin, 1973.
F. J. Luque, J. M. Lopez, M. Orozco, Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects”, Theor. Chem. Acc. 103, 343–345 (2000).
H. Tanak, A. A. Agar, O. Buyukgungor, Experimental (XRD, FT-IR and UV–Vis) and theoretical modeling studies of Schiff base (E)-N′-((5-nitrothiophen-2-yl)methylene)-2-phenoxyaniline, Spectrochim. Acta Part A, 118, 672–682 (2014).
H. Tanak, Density functional computational studies on 2-[(2,4-Dimethylphenyl)iminomethyl]-3,5-dimethoxyphe-nol, Int. J. Quant. Chem. 112, 2392–2402 (2012).
H. Tanak, Molecular structure, spectroscopic (FT-IR and UV-Vis) and DFT quantum-chemical studies on 2-[(2,4-dimethylphenyl)iminomethyl]-6-methylphenol, Mol. Phys. 112, 1553–1565 (2014).