Novel Pyrazole Derivatives Having Mono/Di Chiral Centered Group as Organocatalyst for Henry Reaction

Authors

  • Adnan Çetin Muş Alparslan University, Faculty of Education, Department of Sciences, Muş
  • Ishak Bildirici Van Yuzuncu Yil University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Van
  • Selçuk Gümüş Van Yuzuncu Yil University, Faculty of Science, Department of Chemistry, Van

DOI:

https://doi.org/10.20450/mjcce.2020.1954

Keywords:

Asymmetric catalyst, chirality, chiral amino alcohol, Lewis acid, pyrazole

Abstract

The chiral substituted pyrazole-3-carboxamides (4a-c), pyrazole-3-carboxylates (5a-c), pyrazole-3-thioureides (7a-c) and pyrazole-3,4-dicarboxamides (10a-c) were prepared via the pyrazolo-3-chlorocarbonyl 2, pyrazolo-3,4-dicarboxy methyl ester 3 with pyrazole-3-isothiocyanate 6 with different (R)-chiral amino alcohols. All of the synthesized chiral compounds binding a pyrazole skeleton were investigated as organocatalysts for asymmetric aldol reactions between nitromethane and p-nitrobenzaldehyde in the presence of CuCl. Enantiomeric excesses and the reaction yields were found to be appropriate values. Furthermore, the best organocatalyst applied in this study was identified after careful optimization of conditions. Lastly, all of the novel compounds were subjected to computational analysis at the B3LYP/6-31++G(d,p) level of theory to obtain information about their structural and electronic properties.

References

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, N. A. Kotov, Attomolar DNA detection with chiral nanorod assemblies, Nat. Commun. 4, 2689 (2013).

DOI: doi.org/10.1038/ncomms3689

B. Wei, N. Liu, J. Zhang, X. Ou, R. Duan, Z. Yang, F. Xia, Regulation of DNA self-assembly and DNA hybrid-ization by chiral molecules with corresponding biosensor applications, Analytic. Chem. 87, 2058–2062 (2015). DOI: doi.org/10.1021/ac504797e

M. Liu, L. Zhang, T. Wang, Supramolecular chirality in self-assembled systems, Chem. Rev. 115, 7304–7397 (2015). DOI: doi.org/10.1021/cr500671p

K. Ohmatsu, T. Ooi, Design of supramolecular chiral ligands for asymmetric metal catalysis, Tetrahedron Lett. 56, 2043–2348 (2015).

DOI: doi.org/10.1016/j.tetlet.2015.02.096

A. G. Maldonado, J. P. Doucet, M. Petitjean, B. T. Fan, Molecular similarity and diversity in chemoinformatics: from theory to applications. Molec. Divers. 10, 39–79 (2006). DOI: doi.org/10.1007/s11030-006-8697-1

J. M. Woodley, New opportunities for biocatalysis: mak-ing pharmaceutical processes greener, Trends Biotechnol. 26, 321–327 (2008).

DOI: doi.org/10.1016/j.tibtech.2008.03.004

S. Saeed, N. Rashid, P. G. Jones, R. Hussain, Synthesis, characterization and biological evaluation of some thiou-rea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents, Eur. J. Med. Chem. 45, 1323–1331 (2010).

DOI: doi.org/10.1016/j.ejmech.2009.12.016

R. A. Sheldon, Chirotechnology: Industrial synthesis of optically active compounds, CRC Press (1993).

DOI: doi.org/10.1002/chir.530060109

L. Jiang, H. T. Zheng, T. Y. Liu, L. Yue, Y. C. Chen, Asymmetric direct vinylogous carbon-carbon bond for-mation catalyzed by bifunctional organocatalysts, Tetra-hedron, 63, 5123–5128 (2007).

DOI: doi.org/10.1016/j.tet.2007.04.011

N. Kumarswamyreddy, V. Kesavan, Enantioselective synthesis of dihydrospiro[indoline-3,4'-pyrano[2,3-c]pyrazole] derivatives via Michael/Hemiketalization Re-action, Org. Lett. 18, 1354–1357 (2016).

DOI: doi.org/10.1021/acs.orglett.6b00287

P. Chauhan, S. Mahajan, D. Enders, Asymmetric synthe-sis of pyrazoles and pyrazolones employing the reactivity of pyrazolin-5-one derivatives, Chem. Commun. 51, 12890–12907 (2015). DOI: doi.org/10.1039/C5CC04930J

L. A. Chen, W. Xu, B. Huang, J. Ma, L. Wang, J. Xi, E. Meggers, Asymmetric Catalysis with an Inert Chiral-at-Metal Iridium Complex, J. Am. Chem. Soc. 135, 10598–10601 (2013). DOI: doi.org/10.1021/ja403777k

H.-M. Zhang, H. Lv, S. Ye, N-Heterocyclic carbene-catalyzed highly enantioselective synthesis of substituted dihydropyranopyrazolones, Org. Biomol. Chem. 11, 6255−6257 (2013). DOI: doi.org/10.1039/C4OB02330G

C. Vila, F. I. Amr, G. Blay, M. C. Muñoz, J. R. Pedro, Organocatalytic enantioselective synthesis of pyrazoles bearing a quaternary stereocenter, Chem. Asia J. 11, 1532–1536 (2016).

DOI: doi.org/10.1002/asia.201600325

J. Xie, X. Y. Xing, F. Sha, Z. Y. Wu, X. Y. Wu, Enanti-oselective synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives via an organocatalytic asymmetric Michael/cyclization cascade reaction, Org. Biomol. Chem. 14, 8346–8355 (2016).

DOI: doi.org/10.1039/C6OB01256F

D. M. Bailey, P. E. Hansen, A. G. Hlavac, E. R. Baiz-man, J. Pear, A. F. DeFelice, M. E. Feigensonf, 3, 4-Diphenyl-1H-pyrazole-1-propanamine antidepressants, J. Med. Chem. 28, 256–260 (1985).

DOI: doi.org/10.1021/jm00380a020

T. L. Siddall, D. G. Ouse, Z. L. Benko, G. M. Garvin, J. L. Jackson, J. M. McQuiston, M. J. Ricks, T. D. Thi-bault, J. A. Turner, J. C. VanHeertum, M. R. Weimer, Synthesis and herbicidal activity of phenyl‐substituted benzoylpyrazoles, Pest Manag Sci 58, 1175–1186 (2002). DOI: doi.org/10.1002/ps.588

H. Tahermansouri, E. Biazar, Functionalization of car-boxylated multi-wall carbon nanotubes with 3,5-diphenyl pyrazole and an investigation of their toxicity, New Car-bon Mater 28, 199–207 (2013).

DOI: doi.org/10.1016/S1872-5805(13)60077-3

N. K. Terrett, A. S. Bell, D. Brown, P. Ellis, Sildenafil (ViagraTM), a potent and selective inhibitor of type 5 CGMP phosphodiesterase with utility for the treatment of male erectile dysfunction, Bioorg. Med. Chem. Let. 6, 1819–1824 (1996).

DOI: doi.org/10.1016/0960-894X(96)00323-X

V. Ramkumar, P. Kannan, Novel heterocyclic based blue and green emissive materials for opto-electronics. Opt Mater 46, 314–323 (2015).

DOI: doi.org/10.1016/j.optmat.2015.04.038

I. Bildirici, A. Cetin, N. Menges, Y. Alan, Synthesis and SAR studies of pyrazole-3-carboxamides and –thio-ureides including chiral moiety: Novel candidates as anti-bacterial agents, J. Serb. Chem. Soc. 83, 795–807 (2018). DOI: doi.org/10.2298/JSC170313029B

A. Çetin, İ. Bildirici, A study on synthesis and antimicro-bial activity of 4-acyl-pyrazoles. J. Saud. Chem. Soc. 22, 279–296 (2016).

DOI: doi.org/10.1016/j.jscs.2016.05.008

W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, 1133–1138 (1965).

DOI: doi.org/10.1103/PhysRev.140.A1133

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., Gaussian 09, Revision D.01. Wallingford CT, USA: Gaussian, Inc., 2013.

A. D. Becke, Density-functional exchange-energy ap-proximation with correct asymptotic behaviour, Phys. Rev. A 38, 3098–3100 (1988).

DOI: doi.org/10.1103/PhysRevA.38.3098

C. Lee, W. Yang, R. G. Parr, Development of the Colle–Salvetti correlation energy formula into a functional of the electron density, Phys. Rev. B 37, 785–789 (1988). DOI: doi.org/10.1103/physrevb.37.785

P. J. Guiry, C. P. Saunders, The development of bidentate P,N-ligands for asymmetric catalysis, Adv. Synth. Catal. 346, 497–537 (2004).

DOI: doi.org/10.1002/adsc.200303138

H. Willms, W. Frank, C. Ganter, Coordination chemistry and catalytic application of bidentate phosphaferrocene-pyrazole and -imidazole based P,N-ligands, Organome-tallics 28, 3049–3058 (2009).

DOI: doi.org/10.1021/om8012025

M. Bartok, Unexpected inversions in asymmetric reac-tions: reactions with chiral metal complexes, chiral or-ganocatalysts, and heterogeneous chiral catalysts, Chem. Rev. 110, 1663–1705 (2009).

DOI: doi.org/10.1021/cr9002352

M. Watanabe, K. Murata, T. Ikariya, Practical synthesis of optically active amino alcohols via asymmetric transfer hydrogenation of functionalized aromatic ketones, J. Org. Chem. 67, 1712–1715 (2002).

DOI: doi.org/10.1021/jo011076w

H. Sasai, T. Suzuki, S. Arai, T. Arai, M. Shibasaki, Basic character of rare earth metal alkoxides. Utilization in cata-lytic carbon-carbon bond-forming reactions and catalytic asymmetric nitro aldol reactions, J. Am. Chem. Soc. 114, 4418–4420 (1992).

DOI: doi.org/10.1021/ja00037a068

D. A. Evans, D. Seidel, M. Rueping, H. W. Lam, J. T. Shaw, C. W. Downey, A New copper acetate-bis(oxazoline)-catalyzed, Enantioselective Henry reaction, J. Am. Chem. Soc. 125, 12692–12693 (2003). DOI: doi.org/10.1021/ja0373871

Downloads

Published

2020-06-09

How to Cite

Çetin, A., Bildirici, I., & Gümüş, S. (2020). Novel Pyrazole Derivatives Having Mono/Di Chiral Centered Group as Organocatalyst for Henry Reaction. Macedonian Journal of Chemistry and Chemical Engineering, 39(1), 17–30. https://doi.org/10.20450/mjcce.2020.1954

Issue

Section

Organic Chemistry