Synthesis, solvatochromism, electronic structure and nonlinear optic properties of quinolin-8-yl 2-hydroxybenzoate

Ayşegül Gümüş, Yadigar Gülseven Sıdır, İsa Sıdır, Selçuk Gümüş


Quinolin-8-yl-2-hydroxybenzoate (abbreviated as QHB) was synthesized and investigated both experimentally and theoretically to obtain its physical and electronic properties. The electronic structure and spectral behavior have been determined by using UV-vis absorption and fluorescence spectra in different 11 polarity solvent medium. The absorption band observed at 306 nm-308 nm is found to having mix of π-π* and n-π* electronic transitions due to its geometrical structure in the solution phase. Solvatochromism of QHB is investigated by using Kamlet-Taft and Catalan methods based on the linear solvation energy relationships (LSER). Kamlet-Taft solvatochromic model indicates that spectral shifts of absorption and fluorescence spectra are effectively controlled by dispersion-polarization forces which describe the non-specific interactions. Solvatochromic model of Catalan designates that solute-solvent interaction is governed by solvent polarity in the absorption spectra and by solvent acidity in the fluorescence spectra. Non-specific interactions have greater effect on fluorescence spectra compared to absorption spectra. Computational calculations were performed by the application of B3LYP/6-311+(d,p) level of theory. Conformational analysis is performed for QHB and five staggered conformers are observed on torsional potential energy surfaces. Accordingly, the most stable conformer is found as involving intra-molecular hydrogen bonding. The geometry of the other conformers indicates that the absence of hydrogen bonding gives rise to relatively higher energy.  Frontier molecular orbitals (HOMO, LUMO) and non-linear optical (NLO) parameters have been calculated by B3LYP/6-311+(d,p) level of theory. Theoretical UV spectra both in gas and solution phases have also been investigated by TDDFT-CAM-B3LYP/6-311+(d,p) level of theory.


Hydroxy-quinoline; Solvatochromism; Bathochromic effect; Spectroscopy; Nonlinear optical properties; TDDFT

Full Text:



H.R.P. Naik, H.S.B. Naik, T.R.R. Naik, H.R. Naika, K. Gouthamchandra, R. Mahmood, B.M.K. Ahamed, Synthesis of novel benzo[h]quinolines: Wound healing, antibacterial, DNA binding and in vitro antioxidant activity, Eur. J. Med. Chem. 44, 981-989 (2009).

Y. Hirano, M. Uehara, K. Saeki, T. Kato, K. Takahashi, T. Mizutani, The influence of quinolines on coumarin 7-hydroxylation in bovine liver microsomes and human CYP2A6, J. Health Sci. 48, 118-125 (2002).

S. Bawa, S. Kumar, Synthesis of Schiff’s bases of 8-methyl-tetrazolo[1,5-a]quinoline as potential anti-inflammatory and antimicrobial agents, Indian J. Chem. 48B, 142-145 (2009).

P.R. Graves, J.J. Kwiek, P. Fadden, R. Ray, K. Hardeman, A.M. Coley, M. Foley, T.A.J. Haystead, Discovery of Novel Targets of Quinoline Drugs in the Human Purine Binding Proteome, Mol. Pharmacol. 62, 1364-1372 (2002).

R. Musiol, J. Jampilek, K. Kralova, D.R. Richardson, D. Kalinowski, B. Podeszwa, J. Finster, H. Niedbala, A. Palka, J. Polanski, Investigating biological activity spectrum for novel quinoline analogues, Bioorg. Med. Chem. 15, 1280-1288 (2007).

L.S. Hunga, C.H. Chen, Recent progress of molecular organic electroluminescent materials and devices, Mater. Sci. Eng. R, 39, 143-222 (2002).

C.H. Chen, J. Shi, Metal chelates as emitting materials for organic electroluminescence, Coord. Chem. Rev., 171, 161-174 (1998).

K.Ch. Song, J.S. Kim, S.M. Park, K.-Ch. Chung, S. Ahn, S.-K. Chang, Fluorogenic Hg2+-selective chemodosimeter derived from 8-hydroxyquinoline, Org. Lett., 8, 3413-3416 (2006).

H. Zhang, Q.-L. Wang, Y.-B. Jiang, 8-Methoxyquinoline based turn-on metal fluoroionophores, Tetrahedron Lett., 48, 3959-3962 (2007).

C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd ed., Wiley-VCH, Weinheim, 1988, p. 285.

C. Reichardt, Solvatochromism, thermochromism, piezochromism, halochromism, and chiro-solvatochromism of pyridinium N-phenoxide betaine dyes. Chem. Soc. Rev. 21, 147-153 (1992).

A. Maiti, A. Svizhenko, M.P. Anantram, Electronic Transport through Carbon Nanotubes: Effects of Structural Deformation and Tube Chirality, Phys. Rev. Lett. 88, 1268051-1268054 (2002).

D. Zhou, D. Ma, Yan Wang, Xianchun Liu, Xinhe Bao, Study with density functional theory method on methane C–H bond activation on the MoO2/HZSM-5 active center, Chem. Phys. Lett. 373, 46-51 (2003).

J. Leconte, A. Markovits, M.K. Skalli, C. Minot, A. Belmajdoub, Periodic ab initio study of the hydrogenated rutile TiO 2(1 1 0) surface, Surf. Sci. 497, 194-204 (2002).

J. Wang, C. Liu, Z. Fang, Y. Liu, Z. Han, DFT study of structural and electronic properties of PdO/HZSM-5, J. Phys. Chem. B 108, 1653-1659 (2004).

M. Szafran, A. Komasa, E.B. Adamska, Crystal and molecular structure of 4-carboxypiperidinium chloride (4-piperidinecarboxylic acid hydrochloride), J. Mol. Struct. 827, 101-107 (2007).

M. Karabacak, Z. Calisir, M. Kurt, E. Kose, A. Atac, The spectroscopic (FT-IR, FT-Raman, dispersive Raman and NMR) study of ethyl-6-chloronicotinate molecule by combined density functional theory, Spectrochim. Acta A 153, 754-770 (2016).

M. Toy, H. Tanak, Molecular structure and vibrational and chemical shift assignments of 3′-chloro-4-dimethylamino azobenzene by DFT calculations, Spectrochim. Acta A 152, 530-536 (2016).

D.S. Chemla, J. Zyss, Non-linear Optical Properties of Organic Molecules and Crystals, Academic Press, New York, 1987.

A. Kawski, Progress in Photochemistry and Photophysics, CRC Press, New York, 1994, p. 1-47.

L.V. Haley, H.F. Hameka, Calculation of molecular electric polarizabilities and dipole moments. II. LiH molecule, Int. J. Qunat. Chem. 11, 733-741 (1977).

J. Jayabharathi, V. Thanikachalam, K. Jayamoorthy, Physicochemical studies of chemosensor imidazole derivatives: DFT based ESIPT process, Spectrochim. Acta A 89, 168-176 (2012).

J. Jayabharathi, V. Thanikachalam, M. Vennila, K. Jayamoorthy, Potential fluorescent chemosensor based on L-tryptophan derivative: DFT based ESIPT process, Spectrochim. Acta A 95, 446-451 (2012).

D.R. Lide (Ed.), CRC Handbook of Chemistry and Physics, 80th ed.CRC Press, Boca Raton, 1999.

C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd edition WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003.

W.M. Haynes (Ed.), CRC Handbook of Chemistry and Physics, 96th ed.CRC Press, Taylor and Francis, Boca Raton, FL, 2015–2016.

M.J. Kamlet, J.L. Abboud, M.H. Abraham, R.W. Taft, Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, .pi.*, .alpha., and .beta., and some methods for simplifying the generalized solvatochromic equation, J. Org. Chem. 48, 2877-2887 (1983).

M.J. Kamlet, J.L. Abboud, R.W. Taft, The solvatochromic comparison method. 6. The .pi.* scale of solvent polarities, J. Am. Chem. Soc. 99, 6027-6038 (1997).

Y. Marcus, The properties of organic liquids that are relevant to their use as solvating solvents, Chem. Soc. Rev. 22, 409-416 (1993).

J. Catalan, Toward a Generalized Treatment of the Solvent Effect Based on Four Empirical Scales: Dipolarity (SdP, a New Scale), Polarizability (SP), Acidity (SA), and Basicity (SB) of the Medium, J. Phys. Chem. B 113, 5951-5960 (2009).

Wolffenstein-DE281007 [Fortschr. Teerfarbenfabr. Verw. Industriasweige, Vol. 12, p729].

İ. Sıdır, Y. Gülseven Sıdır, H. Berber, F. Demiray, Emerging ground and excited state dipole moments and external electric field effect on electronic structure. A solvatochromism and theoreticcal study on 2-((phenylimino)methyl)phenol derivativers. Journal of Molecular Liquids, 206, 56-67 (2015).

S. Gandhimathi, C. Balakrishnan, R. Venkataraman, M.A. Neelakantan, Crystal structure, solvatochromism and estimation of ground and excited state dipole moments of an allyl arm containing Schiff base: Experimental and Theoretical calculations. Journal of Molecular Liquids, 219, 239-250 (2016).

J. Catalan, J.P. Catalan, On the solvatochromism of the n ↔ π* electronic transitions in ketones, Phys. Chem. Chem. Phys. 13, 4072-4082 (2011).

W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133-1138 (1965).

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

A.D. Becke, Density-functional exchange-energy approximationwith correct asymptotic behavior. Phys. Rev. A 38, 3098-3100 (1988).

C. Lee, W. Yang, R.G. Parr, Development of the Colle–Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B 37, 785-789 (1988).

C. Amovilli, V. Barone, R. Cammi, E. Cances, M. Cossi, B. Mennucci, C.S. Pomelli, J. Tomasi, Recent advances in the description of solvent effects with the polarisable continuum model, Adv. Quantum Chem. 32, 227-261 (1998).

M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, Molecular excitation energies to high-lying bound states from timedependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 108, 4439-4449 (1998).

Y.X. Sun, Q.L. Hao, W.X. Wei, Z.X. Yu, L.D. Lu, X. Wang, Y.S. Wang, Experimental and density functional studies on 4-(3,4-dihydroxybenzylideneamino)antipyrine, and 4-(2,3,4-trihydroxybenzylideneamino)antipyrine, J. Mol. Struct.:Theochem 904, 74-82 (2009).

C. Andraud, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot, A. Collet, Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives, J. Am. Chem. Soc. 116, 2094-2102 (1994).

V.M. Geskin, C. Lambert, J.L. Bredas, Origin of High Second- and Third-Order Nonlinear Optical Response in Ammonio/Borato Diphenylpolyene Zwitterions: the Remarkable Role of Polarized Aromatic Groups, J. Am. Chem. Soc. 125, 15651-15658 (2003).

M. Nakano, H. Fujita, M. Takahata, K. Yamaguchi, heoretical Study on Second Hyperpolarizabilities of Phenylacetylene Dendrimer: Toward an Understanding of Structure−Property Relation in NLO Responses of Fractal Antenna Dendrimers, J. Am. Chem. Soc. 124, 9648-9655 (2002).

D. Sajan, H. Joe, V.S. Jayakumar, J. Zaleski, Structural and electronic contributions to hyperpolarizability in methyl p-hydroxy benzoate, J. Mol. Struct. 785, 43-53 (2006).

R. Zhang, B. Du, G. Sun, Y.X. Sun, Experimental and theoretical studies on o-, m- and p-chlorobenzylideneaminoantipyrines, Spectrochim. Acta A 75, 1115-1124 (2010).

D.A. Kleinman, Nonlinear Dielectric Polarization in Optical Media, Phys. Rev. 126, 1977-1979 (1962).

K.S. Thanthiriwatte, K.M. Nalin de Silva, Non-linear optical properties of novel fluorenyl derivatives—ab initio quantum chemical calculations, J. Mol. Struct.:Theochem 617, 169-175 (2002).

H. Tanak, K. Pawlus, M.K. Marchewka, A. Pietraszko, Structural, vibrational and theoretical studies of anilinium trichloroacetate: New hydrogen bonded molecular crystal with nonlinear optical properties, Spectrochim. Acta Part A 118, 82-93 (2014).

H. Tanak, A.A. Agar, O. Buyukgungor, Experimental (XRD, FT-IR and UV–Vis) and theoretical modeling studies of Schiff base (E)-N′-((5-nitrothiophen-2-yl)methylene)-2-phenoxyaniline, Spectrochim. Acta Part A 118, 672-682 (2014).

H. Tanak, Molecular structure, spectroscopic (FT-IR and UV-Vis) and DFT quantum-chemical studies on 2-[(2,4-Dimethylphenyl)iminomethyl]-6-methylphenol, Mol. Phys. 112, 1553-1565 (2014).

S.M. Yanez, S.A. Moya, C. Zuniga, G.C. Jiron, Theoretical assessment of TD-DFT applied to a ferrocene-based complex. Comput Theor Chem 1118, 65-74 (2017).



  • There are currently no refbacks.

Copyright (c) 2018 Ayşegül Gümüş, Yadigar Gülseven Sıdır, İsa Sıdır, Selçuk Gümüş

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.