Comparing energy and Randic energy

Boris Furtula, Ivan Gutman

Abstract


The recently conceived Randić energy (RE) is examined, and its relation to the (earlier much studied) total π-electron energy (E) is investigated. Within classes of molecular graphs, there exists a relatively good (increasing) linear correlation between RE and E. However, several significant differences between the structure-dependencies of RE and E have been discovered, the most striking of which is their dependence on the number m of edges of the underlying graph. Whereas, with increasing m, the average value of E increases, reaches a maximum and then decreases, the average value of RE monotonically decreases. The structure of the connected graph with a fixed number of vertices and maximal RE value was established.


Keywords


total π-electron energy; Randić energy; molecular graph; energy (of graph)

Full Text:

PDF

References


L. J. Schaad, B. A. Hess, Hückel molecular orbital π resonance energies. The question of the σ structure, J. Am. Chem. Soc., 94, 3068-3074 (1972).

I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.

L. J. Schaad, B. A. Hess, Dewar resonance energy, Chem. Rev., 101, 1465-1476 (2001).

I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on molecular topology, J. Serb. Chem. Soc., 70, 441-456 (2005).

M. Perić, I. Gutman, J. Radić-Perić, The Hückel total π-electron energy puzzle, J. Serb. Chem. Soc., 71, 771-783 (2006).

X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.

Ş. B. Bozkurt, A. D. Güngör, I. Gutman, A. S Çevik, Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem., 64, 239-250 (2010).

Ş. B. Bozkurt, A. D. Güngör, I. Gutman, Randić spectral radius and Randić energy, MATCH Commun. Math. Comput. Chem., 64, 321-334 (2010).

M. Cavers, S. Fallat, S. Kirkland, On the normalized Laplacian energy and general Randić index R-1 of graphs, Lin. Algebra Appl., 433, 172-190 (2010).

O. Rojo, L. Medina, Construction of bipartite graphs having the same Randić energy, MATCH Commun. Math. Comput. Chem., 68, 805-814 (2012).

B. Liu, Y. Huang, J. Feng, A note on the Randić spectral radius, MATCH Commun. Math. Comput. Chem., 68, 913-916 (2012).

Ş. B. Bozkurt, D. Bozkurt, Randić energy and Randić Estrada index of a graph, Europ. J. Pure Appl. Math., 5, 88-96 (2012).

L. R. Silvia, G. E. Davis, Laplacian energy graphs,

http://compmath.files.wordpress.com/2009/02/lsposter.pdf

D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs - Theory and Application, Academic Press, New York, 1980.

I. Gutman, T. Soldatović, Novel approximate formulas for the total π-electron energy of benzenoid hydrocarbons, Bull. Chem. Technol. Maced., 19, 17-20 (2000).

I. Gutman, S. Stanković, Why is phenanthrene more stable than anthracene?, Maced. J. Chem. Chem. Engin., 26, 111-114 (2007).

M. Randić, On characterization of molecular branching, J. Am. Chem. Soc., 97, 6609-6615 (1975).

L. B. Kier, L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.

L. B. Kier, L. H. Hall, Molecular Connectivity in Structure--Activity Analysis, Wiley, New York, 1986.

L. Pogliani, From molecular connectivity indices to semiempirical connectivity terms: Recent trends in graph theoretical descriptors, Chem. Rev., 100, 3827-3858 (2000).

M. Randić, On history of the Randić index and emerging hostility toward chemical graph theory, MATCH Commun. Math. Comput. Chem., 59, 5-124 (2008).

X. Li, Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem., 59, 127-156 (2008).

X. Li, I. Gutman, Mathematical Aspects of Randić -Type Molecular Structure Descriptors, Univ. Kragujevac, Kragujevac, 2006.

I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.

http://numpy.scipy.org/

http://networkx.lanl.gov/

http://cs.anu.edu.au/~bdm/nauty/

G. Brinkmann, O. Delgado Friedrichs, S. Lisken, A. Peeters, N. Van Cleemput, CaGe – a virtual environment for studying some special classes of plane graphs - an update, MATCH Commun. Math. Comput. Chem., 63, 533-552 (2010).

I. Gutman, S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons, Springer, Berlin, 1989, pp. 21-23.

I. Gutman, G. G. Hall, S. Marković, Z. Stanković, V. Radivojević, Effect of bay regions on the total π-electron energy of benzenoid hydrocarbons, Polyc. Arom. Comp., 2, 275-282 (1991).

B. J. McClelland, Properties of the latent roots of a matrix: The estimation of π-electron energies, J. Chem. Phys., 54, 640-643 (1971).

I. Gutman, T. Soldatović, D. Vidović, The energy of a graph and its size dependence. A Monte Carlo approach, Chem. Phys. Lett., 297, 428-432 (1998).

I. Gutman, Acyclic systems with extremal Hückel π-electron energy, Theor. Chim. Acta, 45, 79-87 (1977).




DOI: http://dx.doi.org/10.20450/mjcce.2013.127

Refbacks

  • There are currently no refbacks.




Copyright (c) 2016 Boris Furtula, Ivan Gutman

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.