Comparing energy and Randic energy
DOI:
https://doi.org/10.20450/mjcce.2013.127Keywords:
total π-electron energy, Randić energy, molecular graph, energy (of graph)Abstract
The recently conceived Randić energy (RE) is examined, and its relation to the (earlier much studied) total π-electron energy (E) is investigated. Within classes of molecular graphs, there exists a relatively good (increasing) linear correlation between RE and E. However, several significant differences between the structure-dependencies of RE and E have been discovered, the most striking of which is their dependence on the number m of edges of the underlying graph. Whereas, with increasing m, the average value of E increases, reaches a maximum and then decreases, the average value of RE monotonically decreases. The structure of the connected graph with a fixed number of vertices and maximal RE value was established.
References
L. J. Schaad, B. A. Hess, Hückel molecular orbital π resonance energies. The question of the σ structure, J. Am. Chem. Soc., 94, 3068-3074 (1972).
I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
L. J. Schaad, B. A. Hess, Dewar resonance energy, Chem. Rev., 101, 1465-1476 (2001).
I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on molecular topology, J. Serb. Chem. Soc., 70, 441-456 (2005).
M. Perić, I. Gutman, J. Radić-Perić, The Hückel total π-electron energy puzzle, J. Serb. Chem. Soc., 71, 771-783 (2006).
X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
Ş. B. Bozkurt, A. D. Güngör, I. Gutman, A. S Çevik, Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem., 64, 239-250 (2010).
Ş. B. Bozkurt, A. D. Güngör, I. Gutman, Randić spectral radius and Randić energy, MATCH Commun. Math. Comput. Chem., 64, 321-334 (2010).
M. Cavers, S. Fallat, S. Kirkland, On the normalized Laplacian energy and general Randić index R-1 of graphs, Lin. Algebra Appl., 433, 172-190 (2010).
O. Rojo, L. Medina, Construction of bipartite graphs having the same Randić energy, MATCH Commun. Math. Comput. Chem., 68, 805-814 (2012).
B. Liu, Y. Huang, J. Feng, A note on the Randić spectral radius, MATCH Commun. Math. Comput. Chem., 68, 913-916 (2012).
Ş. B. Bozkurt, D. Bozkurt, Randić energy and Randić Estrada index of a graph, Europ. J. Pure Appl. Math., 5, 88-96 (2012).
L. R. Silvia, G. E. Davis, Laplacian energy graphs,
http://compmath.files.wordpress.com/2009/02/lsposter.pdf
D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs - Theory and Application, Academic Press, New York, 1980.
I. Gutman, T. Soldatović, Novel approximate formulas for the total π-electron energy of benzenoid hydrocarbons, Bull. Chem. Technol. Maced., 19, 17-20 (2000).
I. Gutman, S. Stanković, Why is phenanthrene more stable than anthracene?, Maced. J. Chem. Chem. Engin., 26, 111-114 (2007).
M. Randić, On characterization of molecular branching, J. Am. Chem. Soc., 97, 6609-6615 (1975).
L. B. Kier, L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
L. B. Kier, L. H. Hall, Molecular Connectivity in Structure--Activity Analysis, Wiley, New York, 1986.
L. Pogliani, From molecular connectivity indices to semiempirical connectivity terms: Recent trends in graph theoretical descriptors, Chem. Rev., 100, 3827-3858 (2000).
M. Randić, On history of the Randić index and emerging hostility toward chemical graph theory, MATCH Commun. Math. Comput. Chem., 59, 5-124 (2008).
X. Li, Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem., 59, 127-156 (2008).
X. Li, I. Gutman, Mathematical Aspects of Randić -Type Molecular Structure Descriptors, Univ. Kragujevac, Kragujevac, 2006.
I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.
http://cs.anu.edu.au/~bdm/nauty/
G. Brinkmann, O. Delgado Friedrichs, S. Lisken, A. Peeters, N. Van Cleemput, CaGe – a virtual environment for studying some special classes of plane graphs - an update, MATCH Commun. Math. Comput. Chem., 63, 533-552 (2010).
I. Gutman, S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons, Springer, Berlin, 1989, pp. 21-23.
I. Gutman, G. G. Hall, S. Marković, Z. Stanković, V. Radivojević, Effect of bay regions on the total π-electron energy of benzenoid hydrocarbons, Polyc. Arom. Comp., 2, 275-282 (1991).
B. J. McClelland, Properties of the latent roots of a matrix: The estimation of π-electron energies, J. Chem. Phys., 54, 640-643 (1971).
I. Gutman, T. Soldatović, D. Vidović, The energy of a graph and its size dependence. A Monte Carlo approach, Chem. Phys. Lett., 297, 428-432 (1998).
I. Gutman, Acyclic systems with extremal Hückel π-electron energy, Theor. Chim. Acta, 45, 79-87 (1977).
Downloads
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.