Cyclic conjugation in benzo-annelated coronenes

Authors

  • Svetlana Jeremić Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac
  • Slavko Radenković Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac
  • Ivan Gutman Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac

DOI:

https://doi.org/10.20450/mjcce.2010.174

Keywords:

polycyclic aromatic hydrocarbons, cyclic conjugation, energy effect of cyclic conjugation, π-electron content, coronene, benzo-annelated coronene

Abstract

The cyclic conjugation in benzo-annelated coronenes is studied by means of the energy effect (ef) and π-electron content (EC) of the six-membered rings. Some peculiarities of the π-electron structure of benzo-coronenes, inferred by the Clar aromatic sextet theory, could be tested and verified. A regularity that earlier was discovered in the case of perylene congeners is now shown to hold also for benzo-annelated coronenes: Benzenoid rings that are annelated linearly with regard to the central hexagon H0 of coronene decrease the intensity of cyclic conjugation in H0 and this effect is proportional to the number of linearly annelated rings. A very good linear correlation exists between the ef- and EC-values.

References

E. Clar, The Aromatic Sextet, Wiley, London, 1972.

I. Gutman, S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons, Springer-Verlag, Berlin, 1989.

I. Gutman, S. J. Cyvin (Eds.), Advances in the Theory of Benzenoid Hydrocarbons, Springer-Verlag, Berlin, 1990.

I. Gutman (Ed.), Advances in the Theory of Benzenoid Hydrocarbons, II, Springer-Verlag, Berlin, 1992.

M. Randić, Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev., 103, 3449–3606 (2003).

I. Gutman, Uvod u hemijsku teoriju grafova, PMF Kragujevac, Kragujevac, 2003.

A. T. Balaban, P. v. R. Schleyer, H. S. Rzepa, Crocker, not Armit and Robinson, begat the six aromatic electrons. Chem. Rev., 105, 3436–3447 (2005).

A. T. Balaban, Clar formulas: How to draw and how not to draw formulas of polycyclic aromatic hydrocarbons. Polyc. Arom. Comp., 24, 83–89 (2004).

D. Biermann, W. Schmidt, Diels-Alder reactivity of polycyclic aromatic hydrocarbons. 1. Acenes and benzologs. J. Am. Chem. Soc., 102, 3163–3173 (1980).

D. Biermann, W. Schmidt, Diels-Alder reactivity of polycyclic aromatic hydrocarbons. 2. Phenes and starphenes. J. Am. Chem. Soc., 102, 3173–3181 (1980).

B. A. Hess, L. J. Schaad, W. C. Herndon, D. Biermann, W. Schmidt, Diels-Alder reactivity of polycyclic aromatic hydrocarbons. 5. Tetrahedron, 37, 2983–2987 (1981).

I. Gutman, Ž. Tomović, K. Mullen, J. P. Rabe, On the distribution of π-electrons in large polycyclic aromatic hydrocarbons. Chem. Phys. Lett., 397, 412–416 (2004).

E. Clar, M. Zander, 1:12-2:3-10:11-Tribenzoperylene. J. Chem. Soc. 1861–1865 (1958).

E. Clar, Polycyclic Hydrocarbons, Academic Press, London, 1964.

I. Gutman, S. Stanković, Comparing the stability of tribenzo

[b,n,pqr]perylene and tribenzo

[b,k,pqr]perylene. Monatsh. Chem. 139, 1179–1184 (2008).

L. C. Sander, S. A. Wise, Polycyclic Aromatic Hydrocarbon Structure Index, Nat. Inst. Stand. Technol., Gaithersburg, 1997.

M. Randić, A. T. Balaban, Partitioning of π-electrons in rings of polycyclic conjugated hydrocarbons. Part 1: Catacondensed benzenoids. Polyc. Arom. Comp., 24, 173–193 (2004).

A. T. Balaban, M. Randić, Partitioning of π-electrons in rings of polycyclic benzenoid hydrocarbons. 2. Catacondensed coronoids. J. Chem. Inf. Comput., Sci. 44, 50–59 (2004).

A. T. Balaban, M. Randić, Partitioning of π-electrons in rings of polycyclic conjugated hydrocarbons. Part 3. Perifusenes. New J. Chem., 28, 800–806 (2004).

I. Gutman, On the distribution of π-electrons in benzenoid hydrocarbons. Bull. Chem. Technol. Maced., 22, 105–110 (2003).

I. Gutman, Partitioning of π-electrons in rings of azaderivatives of triphenylene. Maced. J. Chem. Chem. Eng., 26, 25–29 (2007).

I. Gutman, S. Bosanac, Quantitative approach to Huckel rule. The relations between the cycles of a molecular graph and the thermodynamic stability of a conjugated molecule. Tetrahedron, 33, 1809–1812 (1977).

I. Gutman, Cyclic conjugation energy effects in polycyclic π-electron systems. Monatsh. Chem., 136, 1055– 1069 (2005).

I. Gutman, Mathematical modeling of chemical phenomena. in: A. Graovac, I. Gutman, D. Vukičević (Eds.), Mathematical Methods and Modelling for Students of Chemistry and Biology, Hum, Zagreb, 2009, pp. 13–27.

I. Gutman, V. Ivanov-Petrović, Unusual modes of cyclic conjugation in phenylenes. Bull. Chem. Technol. Maced., 16, 91–96 (1997).

I. Gutman, Ž. Tomović, On cyclic conjugation of the members of the pyrene/peropyrene series and their formally π-localized derivatives. Bull. Chem. Technol. Maced., 20, 33–37 (2001).

I. Gutman, S. Stanković, Why is phenanthrene more stable than anthracene?, Maced. J. Chem. Chem. Eng., 26, 111–114 (2007).

I. Gutman, T. Morikawa, S. Narita, On π-electron content of bonds and rings in benzenoid hydrocarbons. Z. Naturforsch. 59a, 295–298 (2004).

I. Gutman, N. Turković, J. Jovičić, Cyclic conjugation in benzo-annelated perylenes: How empty is the “empty” ring? Monatsh. Chem., 135, 1389–1394 (2004).

S. Radenković, W. Linert, I. Gutman, S. Jeremić, Pairwise energy effects of rings in benzo-annelated perylenes. Indian J. Chem., 48A, (2009) 1657–1661 (2009).

Downloads

Published

2010-06-15

How to Cite

Jeremić, S., Radenković, S., & Gutman, I. (2010). Cyclic conjugation in benzo-annelated coronenes. Macedonian Journal of Chemistry and Chemical Engineering, 29(1), 63–69. https://doi.org/10.20450/mjcce.2010.174

Issue

Section

Theoretical Chemistry