A simple formula for calculating resonance energy of benzenoid hydrocarbons
DOI:
https://doi.org/10.20450/mjcce.2006.274Keywords:
benzenoid hydrocarbons, resonance energy, topological resonance energy, Kekulé structuresAbstract
The topological resonance energy (TRE) of a catacondensed benzenoid hydrocarbon with h six-membered rings and K Kekulé structures can be calculated by the (approximate) formula TRE = Ah + B + CK e–Dh, where A = 0.136, B = –0.223, C = 0.281, and D = 0.454. Thus, within classes of benzenoid isomers, TRE is an increasing linear function of K. The greater is h, the smaller the effect of the number of Kekulé structures on TRE.
References
-[1] A. Streitwieser, Molecular Orbital Theory for Organic Chemists, Wiley, New York, 1961.
-[2] M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, New York, 1969.
-[3] A. Graovac, I. Gutman, N. Trinajsti_, Topological Approach to the Chemistry of Conjugated Molecules, Springer-Verlag, Berlin, 1977.
-[4] N. Trinajsti_, Chemical Graph Theory, CRC Press, Boca Raton, 1983; 2nd ed.: 1992.
-[5] M. J. S. Dewar, C. de Llano, Ground states of conjugated molecules. XI. Improved treatment of hydrocarbons, J. Am. Chem. Soc., 91, 789–795 (1969).
-[6] A. T. Balaban, Chemical graphs X. (Aromaticity VIII). Resonance energies of cata-condensed benzenoid polycyclic hydrocarbons, Rev. Roum. Chim., 15, 1243–1250, (1970).
-[7] N. C. Baird, Dewar resonance energy, J. Chem. Educ., 48, 509–514 (1971).
-[8] B. A. Hess, L. J. Schaad, Hückel molecular orbital _ resonance energies. A new approach, J. Am. Chem. Soc., 93, 305–310 (1971).
-[9] B. A. Hess, L. J. Schaad, Hückel molecular orbital _ resonance energies. The benzenoid hydrocarbons, J. Am. Chem. Soc., 93, 2413–2416 (1971).
-[10] M. Milun, Z. Sobotka, N. Trinajsti_, Hückel molecular orbital calculations of the index of aromatic stabilization of polycyclic conjugated molecules, J. Org. Chem., 37, 139–141 (1972).
-[11] W. C. Herndon, M. L. Ellzey, Resonance theory. V. Resonance energies of benzenoid and nonbenzenoid _ systems, J. Am. Chem. Soc., 96, 6631–6642 (1974).
-[12] R. Swinborne-Sheldrake, W. C. Herndon, I. Gutman, Kekulé structures and resonance energies of benzenoid hydrocarbons, Tetrahedron Lett., 755–758 (1975).
-[13] C. F. Wilcox, Topological definition of resonance energy, Croat. Chem. Acta, 47, 87–94 (1975).
-[14] I. Gutman, M. Milun, N. Trinajsti_, Topological definition of delocalisation energy, MATCH Commun. Math. Comput. Chem., 1, 171–175 (1975).
-[15] M. Randi_, Conjugated circuits and resonance energies of benzenoid hydrocarbons, Chem. Phys. Lett., 38, 68–70 (1976).
-[16] J. Aihara, A new definition of Dewar-type resonance energies, J. Am. Chem. Soc., 98, 2750–2758 (1976).
-[17] I. Gutman, M. Milun, N. Trinajsti_, Graph theory and molecular orbitals. 19. Nonparametric resonance energies of arbitrary conjugated systems, J. Am. Chem. Soc., 99, 1692–1704 (1977).
-[18] J. Aihara, Resonance energies of benzenoid hydrocarbons, J. Am. Chem. Soc., 99, 2048–2053 (1977).
-[19] M. Randi_, A graph theoretical approach to conjugation and resonance energies of hydrocarbons, Tetrahedron, 33, 1905–1920 (1977).
-[20] Y. Jiang, A. Tang, R. Hoffmann, Evaluation of moments and their application to Hückel molecular orbital theory, Theor. Chim. Acta, 65, 255–265 (1984).
-[21] J. Cioslowski, Nodal increments approach to the topological resonance energy of benzenoid hydrocarbons, MATCH Commun. Math. Comput. Chem. 19, 163–170 (1986).
-[22] D. Babi_, A. Graovac, I. Gutman, On a resonance energy model based on expansion in terms of acyclic moments: Exact results, Theor. Chim. Acta, 79, 403–411 (1991).
-[23] D. Babi_, N. Trinajsti_, Resonance energy of conjugated hydrocarbons derived by cluster expansion, Croat. Chem. Acta, 65, 881–892 (1992).
-[24] F. Zhang, H. Zhang, Y. Liu, The Clar covering polynomial of hexagonal systems. II. An application to resonance energy of condensed aromatic hydrocarbons, Chin. J. Chem., 14, 321–325 (1996).
-[25] L. J. Schaad, B. A. Hess, Dewar resonance energy, Chem. Rev., 101, 1465–1476 (2001).
-[26] S. W. Slayden, J. F. Liebman, The energetics of aromatic hydrocarbons: An experimental thermochemical perspective, Chem. Rev., 101, 1541–1566 (2001).
-[27] M. Randi_, Aromaticity of polycyclic conjugated hydrocarbons, Chem. Rev., 103, 3449–3606 (2003).
-[28] M. K. Cyra_ski, Energetic aspects of cyclic _-electron delocalization: Evaluation of the methods of estimating aromatic stabilization energies, Chem. Rev., 105, 3773– 3811 (2005).
-[29] I. Lukovits, Resonance energy in graphite, J. Chem. Inf. Comput. Sci. 44, 1565–1570 (2004).
-[30] I. Gutman, S. Gojak, B. Furtula, Clar theory and resonance energy, Chem. Phys. Lett., 413, 396–399 (2005).
-[31] I. Gutman, S. Gojak, S. Stankovi_, B. Furtula, A concealed difference between the structure-dependence of Dewar and topological resonance energy, J. Mol. Struct. (Theochem), 757, 119–123 (2005).
-[32] I. Gutman, S. Gojak, B. Furtula, S. Radenkovi_, A. Vodopivec, Relating total _-electron energy and resonance energy of benzenoid molecules with Kekulé- and Clarstructure- based parameters, Monatsh. Chem. (in press).
-[33] P. Ili_, B. Sinkovi_, N. Trinajsti_, Topological resonance energies of conjugated structures, Israel J. Chem., 20, 258–269 (1980).
-[34] P. Ili_, N. Trinajsti_, Topological resonance energies of conjugated ions, radicals and ion radicals, J. Org. Chem., 45, 1738–1748 (1980).
-[35] J. Aihara, Topological resonance energies of fullerenes and their molecular ions, J. Mol. Struct. (Theochem), 311, 1–8 (1994).
-[36] D. Babi_, O. Ori, Matching polynomial and topological resonance energy of C70, Chem. Phys. Lett., 234, 240–244 (1995).
-[37] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total _-electron energy on molecular topology, J. Serb. Chem. Soc., 70, 441–456 (2005).
-[38] I. Gutman, O. E. Polansky, Mathematical Concepts, in: Organic Chemistry, Springer-Verlag, Berlin, 1986.
-[39] J. V. Knop, W. R. Müller, K. Szymanski, N. Trinajsti_, Computer Generation of Certain Classes of Molecules, SKTH, Zagreb, 1985.
-[40] G. G. Hall, A graphical model of a class of molecules, Int. J. Math. Educ. Sci. Technol., 4, 233–240 (1973).
-[41] G. G. Hall, Eigenvalues of molecular graphs, Publ. Inst. Math. Appl., 17, 70–72 (1981).
Downloads
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.