A simple formula for calculating resonance energy of benzenoid hydrocarbons

Authors

  • Ivan Gutman Faculty of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac
  • Slavko Slavko Radenković Faculty of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac

DOI:

https://doi.org/10.20450/mjcce.2006.274

Keywords:

benzenoid hydrocarbons, resonance energy, topological resonance energy, Kekulé structures

Abstract

The topological resonance energy (TRE) of a catacondensed benzenoid hydrocarbon with h six-membered rings and K Kekulé structures can be calculated by the (approximate) formula TRE = Ah + B + CK e–Dh, where A = 0.136, B = –0.223, C = 0.281, and D = 0.454. Thus, within classes of benzenoid isomers, TRE is an increasing linear function of K. The greater is h, the smaller the effect of the number of Kekulé structures on TRE.

References

-[1] A. Streitwieser, Molecular Orbital Theory for Organic Chemists, Wiley, New York, 1961.

-[2] M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, New York, 1969.

-[3] A. Graovac, I. Gutman, N. Trinajsti_, Topological Approach to the Chemistry of Conjugated Molecules, Springer-Verlag, Berlin, 1977.

-[4] N. Trinajsti_, Chemical Graph Theory, CRC Press, Boca Raton, 1983; 2nd ed.: 1992.

-[5] M. J. S. Dewar, C. de Llano, Ground states of conjugated molecules. XI. Improved treatment of hydrocarbons, J. Am. Chem. Soc., 91, 789–795 (1969).

-[6] A. T. Balaban, Chemical graphs X. (Aromaticity VIII). Resonance energies of cata-condensed benzenoid polycyclic hydrocarbons, Rev. Roum. Chim., 15, 1243–1250, (1970).

-[7] N. C. Baird, Dewar resonance energy, J. Chem. Educ., 48, 509–514 (1971).

-[8] B. A. Hess, L. J. Schaad, Hückel molecular orbital _ resonance energies. A new approach, J. Am. Chem. Soc., 93, 305–310 (1971).

-[9] B. A. Hess, L. J. Schaad, Hückel molecular orbital _ resonance energies. The benzenoid hydrocarbons, J. Am. Chem. Soc., 93, 2413–2416 (1971).

-[10] M. Milun, Z. Sobotka, N. Trinajsti_, Hückel molecular orbital calculations of the index of aromatic stabilization of polycyclic conjugated molecules, J. Org. Chem., 37, 139–141 (1972).

-[11] W. C. Herndon, M. L. Ellzey, Resonance theory. V. Resonance energies of benzenoid and nonbenzenoid _ systems, J. Am. Chem. Soc., 96, 6631–6642 (1974).

-[12] R. Swinborne-Sheldrake, W. C. Herndon, I. Gutman, Kekulé structures and resonance energies of benzenoid hydrocarbons, Tetrahedron Lett., 755–758 (1975).

-[13] C. F. Wilcox, Topological definition of resonance energy, Croat. Chem. Acta, 47, 87–94 (1975).

-[14] I. Gutman, M. Milun, N. Trinajsti_, Topological definition of delocalisation energy, MATCH Commun. Math. Comput. Chem., 1, 171–175 (1975).

-[15] M. Randi_, Conjugated circuits and resonance energies of benzenoid hydrocarbons, Chem. Phys. Lett., 38, 68–70 (1976).

-[16] J. Aihara, A new definition of Dewar-type resonance energies, J. Am. Chem. Soc., 98, 2750–2758 (1976).

-[17] I. Gutman, M. Milun, N. Trinajsti_, Graph theory and molecular orbitals. 19. Nonparametric resonance energies of arbitrary conjugated systems, J. Am. Chem. Soc., 99, 1692–1704 (1977).

-[18] J. Aihara, Resonance energies of benzenoid hydrocarbons, J. Am. Chem. Soc., 99, 2048–2053 (1977).

-[19] M. Randi_, A graph theoretical approach to conjugation and resonance energies of hydrocarbons, Tetrahedron, 33, 1905–1920 (1977).

-[20] Y. Jiang, A. Tang, R. Hoffmann, Evaluation of moments and their application to Hückel molecular orbital theory, Theor. Chim. Acta, 65, 255–265 (1984).

-[21] J. Cioslowski, Nodal increments approach to the topological resonance energy of benzenoid hydrocarbons, MATCH Commun. Math. Comput. Chem. 19, 163–170 (1986).

-[22] D. Babi_, A. Graovac, I. Gutman, On a resonance energy model based on expansion in terms of acyclic moments: Exact results, Theor. Chim. Acta, 79, 403–411 (1991).

-[23] D. Babi_, N. Trinajsti_, Resonance energy of conjugated hydrocarbons derived by cluster expansion, Croat. Chem. Acta, 65, 881–892 (1992).

-[24] F. Zhang, H. Zhang, Y. Liu, The Clar covering polynomial of hexagonal systems. II. An application to resonance energy of condensed aromatic hydrocarbons, Chin. J. Chem., 14, 321–325 (1996).

-[25] L. J. Schaad, B. A. Hess, Dewar resonance energy, Chem. Rev., 101, 1465–1476 (2001).

-[26] S. W. Slayden, J. F. Liebman, The energetics of aromatic hydrocarbons: An experimental thermochemical perspective, Chem. Rev., 101, 1541–1566 (2001).

-[27] M. Randi_, Aromaticity of polycyclic conjugated hydrocarbons, Chem. Rev., 103, 3449–3606 (2003).

-[28] M. K. Cyra_ski, Energetic aspects of cyclic _-electron delocalization: Evaluation of the methods of estimating aromatic stabilization energies, Chem. Rev., 105, 3773– 3811 (2005).

-[29] I. Lukovits, Resonance energy in graphite, J. Chem. Inf. Comput. Sci. 44, 1565–1570 (2004).

-[30] I. Gutman, S. Gojak, B. Furtula, Clar theory and resonance energy, Chem. Phys. Lett., 413, 396–399 (2005).

-[31] I. Gutman, S. Gojak, S. Stankovi_, B. Furtula, A concealed difference between the structure-dependence of Dewar and topological resonance energy, J. Mol. Struct. (Theochem), 757, 119–123 (2005).

-[32] I. Gutman, S. Gojak, B. Furtula, S. Radenkovi_, A. Vodopivec, Relating total _-electron energy and resonance energy of benzenoid molecules with Kekulé- and Clarstructure- based parameters, Monatsh. Chem. (in press).

-[33] P. Ili_, B. Sinkovi_, N. Trinajsti_, Topological resonance energies of conjugated structures, Israel J. Chem., 20, 258–269 (1980).

-[34] P. Ili_, N. Trinajsti_, Topological resonance energies of conjugated ions, radicals and ion radicals, J. Org. Chem., 45, 1738–1748 (1980).

-[35] J. Aihara, Topological resonance energies of fullerenes and their molecular ions, J. Mol. Struct. (Theochem), 311, 1–8 (1994).

-[36] D. Babi_, O. Ori, Matching polynomial and topological resonance energy of C70, Chem. Phys. Lett., 234, 240–244 (1995).

-[37] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total _-electron energy on molecular topology, J. Serb. Chem. Soc., 70, 441–456 (2005).

-[38] I. Gutman, O. E. Polansky, Mathematical Concepts, in: Organic Chemistry, Springer-Verlag, Berlin, 1986.

-[39] J. V. Knop, W. R. Müller, K. Szymanski, N. Trinajsti_, Computer Generation of Certain Classes of Molecules, SKTH, Zagreb, 1985.

-[40] G. G. Hall, A graphical model of a class of molecules, Int. J. Math. Educ. Sci. Technol., 4, 233–240 (1973).

-[41] G. G. Hall, Eigenvalues of molecular graphs, Publ. Inst. Math. Appl., 17, 70–72 (1981).

Downloads

Published

2006-06-15

How to Cite

Gutman, I., & Slavko Radenković, S. (2006). A simple formula for calculating resonance energy of benzenoid hydrocarbons. Macedonian Journal of Chemistry and Chemical Engineering, 25(1), 17–21. https://doi.org/10.20450/mjcce.2006.274

Issue

Section

Theoretical Chemistry