Structural characterization of kaempferol: a spectroscopic and computational study

Dejan Milenković, Jasmina M Dimitrić Marković, Dušan Dimić, Svetlana Jeremić, Dragan Amić, Marijana Stanojević Pirković, Zoran S Marković


Calculations based on the density functional theory, with the B3LYP functional and the 6-311++G(d,p) basis set, were performed with the aim of confirming the molecular structure and spectroscopic characteristics of kaempferol, a naturally occurring flavonoid molecule. The electronic structure of kaempferol was examined using NBO analysis. The assigning of the experimentally obtained IR and Raman spectra was performed after the best-fit-based comparison with theoretical spectra. The 13C and 1H NMR experimental spectra were related to the theoretically obtained values of the chemical shifts determined by the GIAO method. The correlation coefficient and the average absolute error values proved B3LYP-D3 to be an adequate method in describing the NMR parameters of kaempferol. Molecular docking analysis was carried out in order to identify the potency of inhibition of the title molecule against human procalcitonin. The inhibition activity was obtained for 10 conformations of ligand inside the protein.


kaempferol; density functional theory; spectroscopic characterization; molecular docking

Full Text:



V. Cody, E. Middleton, J. B. Harborne, Plant flavo-noids in biology and medicine. Biochemical, pharma-cological, and structure-activity relationships. Proceed-ings of a symposium, Buffalo, New York, July 22–26, 1985, Prog. Clin. Biol. Res. 213, 1‒592 (1986).

C. Rice-Evans, Flavonoid antioxidants, Curr. Med. Chem. 8, 797‒807 (2001).


J. M. Calderón-Montaño, E. Burgos-Morón, C. Pérez-Guerrero, M. López-Lázaro, A review on the dietary flavonoid kaempferol, Mini Rev. Med. Chem. 11, 298‒344 (2011). DOI:10.2174/138955711795305335.

S. V. Jovanovic, S. Steenken, M. Tosic, B. Marjanov-ic, M. G. Simic, Flavonoids as antioxidants, J. Am. Chem. Soc. 116, 4846‒4851 (1994).


P. G. Pietta, Flavonoids as antioxidants, J. Nat. Prod. 63, 1035‒1042 (2000). DOI:10.1021/np9904509.

A. Marfak, P. Trouillas, D. P. Allais, Y. Champavier, C. A. Calliste, J. L. Duroux, Radiolysis of kaempferol in water/methanol mixtures. Evaluation of antioxidant activity of kaempferol and products formed, J. Agric. Food Chem. 51, 1270‒1277 (2003). DOI:10.1021/jf020836g.

T. Walle, Absorption and metabolism of flavonoids, Free Rad. Biol. Med. 36, 829‒837 (2004).


R. J. Williams, J. P. E. Spencer, C. Rice-Evans, Flavo-noids: antioxidants or signalling molecules? Free Rad. Biol. Med. 36, 838‒849 (2004).


C. G. Fraga, M. Galleano, S. V. Verstraeten, P. I. Oteiza, Basic biochemical mechanisms behind the health benefits of polyphenols, Mol. Aspects Med. 31, 435‒445 (2010). DOI:10.1016/j.mam.2010.09.006.

R. M. Han, J. P. Zhang, L. H. Skibsted, Reaction dy-namics of flavonoids and carotenoids as antioxidants, Molecules 17, 2140‒2160 (2012).


D. Pal, P. Verma, Flavonoids: a powerful and abun-dant source of antioxidants, Int. J. Pharm. Pharm. Sci. 5, 95‒98 (2013).

D. Procházková, I. Boušová, N. Wilhelmová, Antioxi-dant and prooxidant properties of flavonoids, Fitotera-pia 82, 513‒523 (2011).


J. B. Harborne, H. Baxter, The Handbook of Natural Flavonoids, John Wiley & Sons, Chichester, New York, 1999.

J. Heilmann, I. Merfort, M. Weiss, Radical scavenger activity of different 3',4'-dihydroxyflavonols and 1,5-dicaffeoylquinic acid studied by inhibition of chemi-luminescence, Planta Med. 61, 435‒438 (1995).


A. Galano, G. Mazzone, R. Alvarez-Diduk, T. Marino, J. R. Alvarez-IdaboyR, N. Russo, Food antioxidants: chemical insights at the molecular level, Annu. Rev. Food Sci. Technol. 7, 335‒352 (2016).


M. Leopoldini, N. Russo, M. Toscano, The molecular basis of working mechanism of natural polyphenolic antioxidants, Food Chem. 125, 288‒306 (2011).


Ø. M. Andersen, K. R. Markham, Flavonoids: Chemis-try, Biochemistry and Applications, Taylor and Francis, Boca Raton, New York, 2006.

P. Rajendran, T. Rengarajan, N. Nandakumar, R. Pal-aniswami, Y. Nishigaki, I. Nishigaki, Kaempferol, a potential cytostatic and cure for inflammatory disor-ders, Eur. J. Med. Chem. 86, 103‒112 (2014).


U. Çoruh, R. Ustabaş, H. Türker Akçay, E. Menteşe, E. M. Vazquez Lopez, Experimental and theoretical studies of 4-[(4-methyl-5-phenyl-4H1,2,4-triazol-3-zl)sulfanyl] benzene-1,2-dicarbonitrile, Maced. J. Chem. Chem. Eng. 35, 165–177 (2016).


M. A. Al-Alshaikh, S. Muthu, E. S. Al-Abdullah, E. E. Porchelvi, S. Lahsasni, A. A. El-Emam, Structural and spectroscopic characterization of N′-[(1E)-(4-fluorophenyl)methylidene]thiophene-2-carbohydrayide, Maced. J. Chem. Chem. Eng. 35, 63–77 (2016). DOI:10.20450/mjcce.2016.811.

R. Álvarez-Diduk, M. T. Ramírez-Silva, A. Galano, A. Merkoçi, Deprotonation mechanism and acidity con-stants in aqueous solution of flavonols: a combined experimental and theoretical study, J. Phys. Chem. B 117, 12347‒12359 (2013). DOI:10.1021/jp4049617.

W. Weglöhner, J. Struck, C. Fischer-Schulz, N. G. Morgenthaler, A. Otto, C. Bohuon, A. Bergmann, Iso-lation and characterization of serum procalcitonin from patients with sepsis, Peptides 22, 2099‒2103 (2001).

E. S. Nylén, R. H. Snider Jr, K. A. Thompson, P. Ro-hatgi, K. L. Becker, Pneumonitis-associated hyperpro-calcitoninemia, Am. J. Med. Sci. 312, 12‒18 (1996).


R. Wysokiński, K. Hernik, R. Szostak, D. Michalska, Electronic structure and vibrational spectra of cis-diammine(orotato)platinum(II), a potential cisplatin analogue: DFT and experimental study, Chem Phys., 333:37‒48, 2007.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38, 3098‒3100 (1988).


A. D. Becke, Density‐functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98, 648‒5652 (1993). DOI:10.1063/1.464913.

A. D. Becke, E. R. Johnson, A density-functional model of the dispersion interaction, J. Chem. Phys. 123, 154101‒154103 (2005). DOI:10.1063/1.2065267.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Na-katsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Iz-maylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Strat-mann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dan-nenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision D.01 Gaussian, Inc.: Walling-ford, CT, 2010.

M. Sardo, R. Siegel, S. M. Santos, J. Rocha, J. R. B. Gomes, L. Mafra, Combining multinuclear high-resolution solid-state MAS NMR and computational methods for resonance assignment of glutathione tripeptide, J. Phys. Chem. A 116, 6711‒6719 (2012).


P. Ivanov, Performance of some DFT functionals with dispersion on modeling of the translational isomers of a solvent-switchable [2]rotaxane, J. Mol. Struct. 1107, 31‒38 (2016). DOI:10.1016/j.molstruc.2015.11.015.

S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density func-tional theory, J. Comp. Chem. 32, 1456‒1465 (2011).


S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A con-sistent and accurate ab initio parametrization of densi-ty functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132, 154104‒154107 (2010). DOI:10.1063/1.3382344.

R. A. Munos, Y. N. Panchenko, G. S. Koptev, N. F Stepanov, Program for calculating distribution of po-tential energy in internal coordinates, J. Appl. Spec-trosc. 12, 428‒429 (1970).

M. H. Jamróz, Vibrational energy distribution analysis VEDA 4, Warsaw, 2004.

K. Wolinski, J. F. Hinton, P. Pulay, Efficient imple-mentation of the gauge-independent atomic orbital method for NMR chemical shift calculations, J. Am. Chem. Soc. 112, 8251‒8260 (1990). DOI:10.1021/ja00179a005.

J. E. Carpenter, F. Weinhold, Analysis of the geome-try of the hydroxymethyl radical by the “different hy-brids for different spins” natural bond orbital proce-dure, J. Mol. Struct. THEOCHEM 169, 41‒62 (1988).

A. E. Reed, L. A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev. 88, 899‒926 (1988).


G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A.J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selec-tive receptor flexibility, J. Comput. Chem. 30, 2785‒2791 (2009). DOI:10.1002/jcc.21256.

J. M. Le Moullec, A. Jullienne, J. Chenais, F. Lasmoles, J. M. Guliana, G. Milhaud, M. S. Mou-khtar, The complete sequence of human preprocalci-tonin, FEBS Lett. 167, 93–97 (1984). DOI:10.1016/0014-5793(84)80839-X.

BIOVIA Discovery Studio v4.0, Accelrys Software, Inc., San Diego, 2016.

T. Yokoyama, Y. Kosaka, M. Mizuguchi, Structural insight into the interactions between death-associated protein kinase 1 and natural flavonoids, J. Med. Chem. 58, 7400‒7408 (2015).


R. Zieliński, H. Szymusiak, Application of DFT B3LYP/GIAO and B3LYP/CSGT methods for inter-pretation of NMR spectra of flavonoids, Pol. J. Food Nutr. Sci. 12, 157‒162 (2003).

J. M. Dimitrić Marković, D. Amić, B. Lučić, Z. S. Marković, Oxidation of kaempferol and its iron(III) complex by DPPH radicals: spectroscopic and theoreti-cal study, Monatsh. Chem. 145, 557‒563 (2014).


J. M. Dimitrić Marković, D. Milenković, D. Amić, A. Popović-Bijelić, M. Mojović, I. A. Pašti, Z. S. Mar-ković, Energy requirements of the reactions of kaempferol and selected radical species in different media: towards the prediction of the possible radical scavenging mechanisms, Struct. Chem. 25, 1795‒1804 (2014). DOI:10.1007/s11224-014-0453-z.

J. S. Murray, K. D. Sen, Molecular Electrostatic Poten-tials : Concepts and Applications, Elsevier, Amster-dam, 1996.

I. Alkorta, J. J. Perez, Molecular polarization potential maps of the nucleic acid bases, Int. J. Quantum Chem. 57, 123‒135 (1996). DOI:10.1002/(sici)1097-461x(1996)57:1<123::aid-qua14>;2-9.

E. Scrocco, J. Tomasi, Electronic molecular structure, reactivity and intermolecular forces: A heuristic inter-pretation by means of electrostatic molecular poten-tials, Adv. Quantum Chem. 11, 116‒193 (1978).

F. J. Luque, M. Orozco, P. K. Bhadane, S. R. Gadre, SCRF calculation of the effect of water on the topolo-gy of the molecular electrostatic potential, J. Phys. Chem. 97, 9380‒9384 (1993). DOI:10.1021/j100139a021.

J. Šponer, P. Hobza, DNA base amino groups and their role in molecular interactions: Ab initio and prelimi-nary density functional theory calculations, Int. J. Quantum Chem. 57, 959‒970 (1996). DOI:10.1002/(SICI)1097-461X(1996)57:5<959::AID-QUA16>3.0.CO;2-S.

S. R. Gadre, I. H. Shrivastava, Shapes and sizes of molecular anions via topographical analysis of electro-static potential, J. Chem. Phys. 94, 4384‒4390 (1991). DOI:10.1063/1.460625.

D. M. Burl, R. D. Miller, C. A. Walsh, Second-order nonlinearity in poled-polymer systems, Chem. Rev. 94, 31‒75 (1994). DOI:10.1021/cr00025a002.

C. Adant, M. Dupuis, J. L. Bredas, Ab initio study of the nonlinear optical properties of urea: Electron corre-lation and dispersion effects, Int. J. Quantum Chem. 56, 497‒507 (1995). DOI:10.1002/qua.560560853.

M. Sikorska, I. Matławska, Kaempferol, isorhamnetin and their glycosides in the flowers of Asclepias syriaca L, Acta Pol. Pharm. 58, 269‒272 (2001).



  • There are currently no refbacks.

Copyright (c) 2019 Dejan Milenković, Jasmina M Dimitrić Marković, Dušan Dimić, Svetlana Jeremić, Dragan Amić, Marijana Stanojević Pirković, Zoran S Marković

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.