A detailed study on the optical properties of 3-benzoyl-7-hydroxy coumarin compound in different solvents and concentrations

Authors

  • Adnan Kurt Adiyaman University
  • Bayram Gündüz Department of Engineering Basic Sciences, Faculty of Engineering and Natural Sciences, Malatya Turgut Özal University, Malatya
  • Murat Koca Adiyaman University

DOI:

https://doi.org/10.20450/mjcce.2019.1403

Keywords:

Coumarin derivative, synthesis and characterization, optoelectronic parameters, dispersion parameters, solvent and concentration effect.

Abstract

A coumarin-derived compound, 3-benzoyl-7-hydroxy coumarin (BHYC), is synthesized to determine its optoelectronic properties, including absorbance band edge, optical band gap, transmittance, refractive index, electrical susceptibility, volume-surface energy loss functions and optical/electrical conductance parameters. The absorbance spectra of BHYC in dimethylformamide (DMF) and dimethylsulfoxide (DMSO) solvents exhibit maximum peaks at 350 and 353 nm, respectively, in the near-ultraviolet region. The absorbance band edge values of BHYC in DMF and DMSO are 2.526 and 2.500 eV, respectively. The optical band gap of BHYC varies from 2.560 to 2.408 eV with increasing molarity. In contrast, the refractive index of BHYC increases from 2.47 to 2.95 with changing molarity. The obtained results show that 3-benzoyl-7-hydroxy coumarin exhibits a semiconductor behavior and it may be an important candidate for many optoelectronic devices, such as diodes, photodiodes and sensors. 

References

B. C. Raju, A. K. Tiwari, J. A. Kumar, A. Z. Ali, S. B. Agawane, G. Saidachary, K. Madhusudana, α-Glucosidase inhibitory antihyperglycemic activity of substituted chromenone derivatives, Bioorg. Med. Chem. 18, 358–365 (2010).

DOI: 10.1016/j.bmc.2009.10.047.

D. Srikrishna, C. Godugu, P. K. Dubey, A Review on pharmacological properties of coumarins, Mini Rev. Med. Chem. 18, 113–141 (2018).

DOI: 10.2174/1389557516666160801094919.

M. J. Matos, D. Vina, C. Picciau, F. Orallo, L. Santana, E. Uriarte, Synthesis and evaluation of 6-methyl-3-phenylcoumarins as potent and selective MAO-B inhibitors, Bioorg. Med. Chem. Lett. 19, 5053–5055 (2009). DOI: 10.1016/j.bmcl.2009.07.039.

P. Manojkumar, T. K. Ravi, G. Subbuchettiar, Synthesis of coumarin heterocyclic derivatives with antioxidant activity and in vitro cytotoxic activity against tumour cells, Acta Pharm. 59, 159–170 (2009).

DOI: 10.2478/v10007-009-0018-7.

I. Kostova, Coumarins as-inhibitors of HIV reverse transcriptase, Curr. HIV Res. 4, 347–363 (2006).

DOI: 10.2174/157016206777709393.

G. Melagraki, A. Afantitis, O. Igglessi-Markopoulou, A. Detsi, M. Koufaki, C. Kontogiorgis, D. J. Hadjipavlou-Litina, Synthesis and evaluation of the antioxidant and anti-inflammatory activity of novel coumarin-3-aminoamides and their alpha-lipoic acid adducts, Eur. J. Med. Chem., 44, 3020–3026 (2009).

DOI: 10.1016/j.ejmech.2008.12.027.

M. Tasior, D. Kim, S. Singha, M. Krzeszewski, K. H. Ahn, D. T. Gryko. π-Expanded coumarins: synthesis, optical properties and applications, J. Mater. Chem. C, 3, 1421–1446 (2015). DOI: 10.1039/c4tc02665a.

S. A. Swanson, G. M. Wallraff, J. P. Chen, W. J. Zhang, L. D. Bozano, K. R. Carter, J. R. Salem, R. Villa, J. C. Scott, Stable and efficient fluorescent red and green dyes for external and internal conversion of blue OLED emission, Chem. Mater. 15, 2305–2312 (2003).

DOI: 10.1021/cm021056q.

H. Zhang, T. Yu, Y. Zhao, D. Fan, L. Qian, C. Yang, K. Zhang, Syntheses, characterization and fluorescent properties of two triethylene-glycol dicoumarin-3-carboxylates, Spectrochim. Acta A Mol. Biomol. Spectrosc. 68, 725–727 (2007).

DOI: 10.1016/j.saa.2006.12.052.

G. Jones, M. A. Rahman, Fluorescence properties of coumarin laser dyes in aqueous polymer media. Chromophore isolation in poly(methacrylic acid) hypercoils, J. Phys. Chem. 98, 13028–13037 (1994). DOI: 10.1021/j100100a035.

D. Gindre, K. Iliopoulos, O. Krupka, M. Evrard, E. Champigny, M. Sallé, Coumarin-containing polymers for high density non-linear optical data storage, Molecules 21, article no:147 (2016).

DOI: 10.3390/molecules21020147.

C. Kim, A. Trajkovska, J. U. Wallace, S. H. Chen, New insight into photoalignment of liquid crystals on coumarin-containing polymer films, Macromolecules, 39, 3817–3823 (2006). DOI: 10.1021/ma060269o.

J. Donovalova, M. Cigan, H. Stankovicova, J. Gaspar, M. Danko, A. Gaplovsky, P. Hrdlovic, Spectral properties of substituted coumarins in solution and polymer matrices, Molecules, 17 3259–3276 (2012). DOI: 10.3390/molecules17033259.

D. Gindre, K. Iliopoulos, O. Krupka, E. Champigny, Y. Morille, M. Sallé, Image storage in coumarin-based copolymer thin films by photoinduced dimerization. Optics Letters, 38, 4636–4639 (2013).

DOI: 10.1364/OL.38.004636.

W. Chen, U. S. Tong, T. Zeng, C. Streb, Y. F. Song, Reversible photodimerization of coumarin-modified Wells–Dawson anions, J. Mater. Chem. C 3, 4388–4393 (2015). DOI: 10.1039/c5tc00379b.

G. Bakhtiari, S. Moradi, S. Soltanali. A novel method for the synthesis of coumarin laser dyes derived from 3-(1H-benzoimidazol-2-yl) coumarin-2-one under micro¬wave irradiation, Arab. J. Chem. 7, 972–975 (2014). DOI: 10.1016/j.arabjc.2010.12.012.

S. Sinha, A. P. Kumaran, D. Mishra, P. Paira, Synthesis and cytotoxicity study of novel 3-(triazolyl)coumarins based fluorescent scaffolds, Bioorg. Med. Chem. Lett. 26, 5557–5561 (2016).

DOI: 10.1016/j.bmcl.2016.09.078.

S. Pajk, Synthesis and fluorescence properties of environment-sensitive 7-(diethylamino)coumarin deriva¬tives, Tetrahedron Lett. 55, 6044–6047 (2014).

DOI: 10.1016/j.tetlet.2014.09.019.

E. S. Aazam, A. F. El Husseiny, H. M. Al-Amri, Synthesis and photoluminescent properties of a Schiff-base ligand and its mononuclear Zn(II), Cd(II), Cu(II), Ni(II) and Pd(II) metal complexes, Arab. J. Chem. 5, 45–53 (2012). DOI: 10.1016/j.arabjc.2010.07.022.

A. Rabahi, M. Makhloufi-Chebli, S. M. Hamdi, A. M. S. Silva, D. Kheffache, B. B. Kheddis, M. Hamdi, Synthesis and optical properties of coumarins and iminocoumarins: Estimation of ground- and excited-state dipole moments from a solvatochromic shift and theoretical methods. J. Mol. Liq. 195, 240–247 (2014). DOI: 10.1016/j.molliq.2014.02.029.

X. Liu, Z. Xu, J. M. Cole, Molecular design of UV−vis absorption and emission properties in organic fluorophores: toward larger bathochromic shifts, enhanced molar extinction coefficients, and greater stokes shifts, J. Phys. Chem. C 117, 16584−16595 (2013). DOI: 10.1021/jp404170w.

Y. Bai, J. Du, X. Weng, Synthesis, characterization, optical properties and theoretical calculations of 6-fluoro coumarin, Spectrochim. Acta A Mol. Biomol. Spectrosc. 126, 14–20 (2014). DOI: 10.1016/j.saa.2014.01.123.

D. Secci. S. Carradori, A. Bolasco, P. Chimenti, M. Yáñez, F. Ortuso, S. Alcaro. Synthesis and selective human monoamine oxidase inhibition of 3-carbonyl, 3-acyl, and 3-carboxyhydrazido coumarin derivatives, Eur. J. Med. Chem. 46, 4846–4852 (2011).

DOI: 10.1016/j.ejmech.2011.07.017.

M. M. Heravi, N. Poormohammad, Y. S. Beheshtiha, B. Baghernejad, R. Malakooti, A New strategy for the synthesis of 3-acyl-coumarin sing mesoporous molecular sieve MCM-41 as a novel and efficient catalyst, Chin. J. Chem. 27, 968–970 (2009).

DOI: 10.1002/cjoc.200990164.

B. Gündüz, Effects of molarity and solvents on the optical properties of the solutions of tris[4-(5-dicyanomethylidenemethyl-2-thienyl)phenyl]amine (TDCV-TPA) and structural properties of its film, Opt. Mater. 36, 425–436 (2013).

DOI: 10.1016/j.optmat.2013.10.005.

J. Tauc, A. Menth, States in the gap, J. Non-Cryst. Solids 8–10, 569–585 (1972).

DOI: 10.1016/0022-3093(72)90194-9.

S. K. Tripathy, Refractive indices of semiconductors from energy gaps, Opt. Mater. 46, 240–246 (2015).

DOI: 10.1016/j.optmat.2015.04.026.

M. Cabuk, B. Gündüz, Controlling the optical properties of polyaniline doped by boric acid particles by changing their doping agent and initiator concentration, Appl. Surf. Sci. 424, 345–351 (2017).

DOI: 10.1016/j.apsusc.2017.03.010.

M. Kurban, B. Gündüz, Physical and optical properties of DCJTB dye for OLED display applications: experimental and theoretical investigation, J. Mol. Struct. 1137, 403–411 (2017).

DOI: 10.1016/j.molstruc.2017.02.064.

C. Orek, B. Gündüz, O. Kaygili, N. Bulut, Electronic, optical, and spectroscopic analysis of TBADN organic semiconductor: Experiment and theory, Chem. Phys. Lett. 678, 130–138 (2017).

DOI: 10.1016/j.cplett.2017.04.050.

F. Abeles, Optical Properties of Solids, North-Holland Publishing Company, Amsterdam, London, 1972.

J. I. Pankove, Optical Processes in Semiconductors. Dover Publication Institute, New York, 1971.

B. Gündüz, Investigation of the spectral, optical and surface morphology properties of the N,N′-Dipentyl-3,4,9,10-perylenedicarboximide small molecule for optoelectronic applications, Polym. Adv. Technol. 27, 144–155 (2016). DOI: 10.1002/pat.3607.

J. O. Akinlami, I. O. Olateju, Reflection coefficient and optical conductivity of gallium nitride GaN, Quant. Electron. Optoelectron. 15, 281–284 (2012).

DOI: 10.15407/spqeo15.03.281.

Downloads

Published

2019-12-30

How to Cite

Kurt, A., Gündüz, B., & Koca, M. (2019). A detailed study on the optical properties of 3-benzoyl-7-hydroxy coumarin compound in different solvents and concentrations. Macedonian Journal of Chemistry and Chemical Engineering, 38(2), 227–236. https://doi.org/10.20450/mjcce.2019.1403

Issue

Section

Physical Chemistry