Synthesis and characterization of a new conjugated polymer containing bithiazole group and its thermal decomposition kinetics
DOI:
https://doi.org/10.20450/mjcce.2020.2025Keywords:
Bithiazole ring, conjugated polymer, synthesis and characterization, thermal decomposition kinetics, activation energy, reaction mechanismAbstract
A new conjugated polymer containing a bithiazole group is prepared by the polycondensation of 2,2'-diamino-4,4'-bithiazole and terephthaldialdehyde in the presence of glacial acetic acid. The kinetics of thermal degradation of the new polymer are investigated by thermogravimetric analysis at different heating rates. The temperature corresponding to the maximum rate loss shifts to higher temperatures with increasing heating rate. The thermal decomposition activation energies of the conjugated polymer in a conversion range of 3–15 % are 288.4 and 281.1 kJ/mol by the Flynn–Wall–Ozawa and Kissinger methods, respectively. The Horowitz–Metzger method shows that the thermodegradation mechanism of the conjugated polymer proceeds over a three-dimensional diffusion type deceleration D3 mechanism. The optimum heating rate is 20 ºC/min.
References
B. B. Çarbaş, Conjugated polymers and their energy applications, The Journal of Global Engineering Studies, 3, 46–60 (2016).
P. A. Sobarzo, A. F. González, E. Schott, L. H. Tagle, A. Tundidor-Camba, G. H. Carmen, I. A. Jessop, C. A. Terraza. New triphenylamine-based oligomeric schiff bases containing tetraphenylsilane moieties in the backbone, Polymers, 11, 1–15 (2019).
DOI:10.3390/polym11020216
M. M. Hashemi, H. Asadollahi, R. Mostaghim, Micro-wave-assisted synthesis of bithiazole derivatives under solvent-free conditions, Russ. J. Org., 41, 623–624 (2005). DOI: 10.1002/chin.200542144
J. Weng, L. M. Jiang, W. L. Sun, Z. Q. Shen, S. Q. Liang, Syntheses and magnetic properties of novel complexes of polymer containing bithiazole ring and salicylic acid, Polymer, 42, 5491–5494 (2001).
DOI: https://doi.org/10.1016/S0032-3861(01)00009-X
W. Sun, L. Jiang, J. Weng, B. He, D. Cen, Z. Shen, A novel bithiazole–tetrathiapentalene polymer and its metal complexes, React. Funct. Polym., 55, 249–254 (2003). DOI:10.1016 /S1381-5148(03)00013-0
F. Deng, W. He, A. S. Luyt, Y. Y. Jiang, Synthesis and properties of a novel polyester containing bithiazole, Chin. Chem. Lett., 22, 109–113 (2011).
DOI: 10.1016/j.cclet.2010.09.019
N. Ding, W. Lin, W. Sun, Z. Shen, A novel hyperbranched aromatic polyamide containing bithia-zole: Synthesis, metal complexation and magnetic properties, Sci. China Chem., 54, 320–325 (2011).
DOI: 10.1007/s11426-010-4211-9
W. He, Y. Y. Jiang, A. S. Luyt, R. O. Ocaya, T. J. Ge. Synthesis and degradation kinetics of a novel polyester containing bithiazole rings, Thermochim. Acta, 525, 9– 15 (2011). DOI: 10.1016/j.tca.2011.07.015
J. H. Flynn, L. A. Wall, A quick, direct method for the determination of activation energy from thermogravi-metric data, J. Polym. Sci. B, 4, 323–328 (1966).
DOI: https://doi.org/10.1002/pol.1966.110040504
T. Ozawa, Applicability of Friedman plot, J. Therm. Anal. 31, 547–551 (1986). DOI: 10.1007/BF01914230
H. E. Kissinger, Reaction kinetics in differential ther-mal analysis, Anal. Chem. 29, 1702–1706 (1957).
DOI: 10.1021/ac60131a045.
A. W. Coats, J. P. Redfern, Kinetic parameters from thermogravimetric data, Nature, 201, 68–69 (1964).
DOI: 10.1038/201068a0.
W. Tang, Y. Liu, H. Zhang, C. Wang, New approxi-mate formula for Arrhenius temperature integral, Thermochim. Acta, 408, 39–43 (2003).
DOI: 10.1016/S0040-6031(03)00310-1.
D. W. van Krevelen, C. van Herrden, F. J. Hutjens, Kinetic study by thermogravimetry, Fuel, 30, 253–258 (1951).
H. H. Horowitz, G. Metzger, A new analysis of ther-mogravimetric traces. Anal. Chem., 35, 1464–1468 (1963). DOI: https://doi.org/10.1021/ac60203a013
L. Nunez, F. Fraga, M. R. Nunez, M. Villanueva, Thermogravimetric study of the decomposition pro-cess of the system BADGE (n=0)/1,2 DCH, Polymer 41, 4635–4641 (2000). DOI: 10.1016/S0032-3861(99)00687-4
A. Kurt, H. İ. Avcı, M. Koca, Synthesis and character-ization of a novel isocoumarin derived polymer and its thermal decomposition kinetics, Maced. J. Chem. Chem. En. 37, 173–184 (2018).
DOI: 10.20450/mjcce.2018.1503.
A. Kurt, M. Koca, Synthesis, characterization and thermal degradation kinetics of poly(3-acetylcoumarin-7-yl-methacrylate) and its organoclay nanocomposites, Journal of Eng. Research 4, 46–65 (2016).
A. Kurt, A. F. Ayhan, M. Koca, Thermal decomposi-tion kinetics of a coumarin based copolymer: poly(3-benzoyl coumarin-7-yl-methacrylate:0.54-co-methyl methacrylate : 0.46), Mal. J. Fund. Appl. Sci., 15, 206–211 (2019). DOI: 10.11113/mjfas.v15n2.1075
A. Kurt, P. Yılmaz, Thermal decomposition kinetics of benzofuran derived polymer/organosilicate nanocom-posites, Kuwait J. Sci. 43, 172–184 (2016).
N. Ding, W. Sun, Y. Lin, Z. Shen. Synthesis and magnetic properties of complexes of a conjugated hyperbranched polymer containing bithiazole rings, Chinese J. Polym. Sci., 30, 759−769 (2012).
DOI: 10.1007/s10118-012-1162-y
L. Li, C. Guan, A. Zhang, D. Chen, Z. Qing, Thermal stabilities and the thermaldegradation kinetics of polyimides. Polym. Degrad. Stabil., 84, 369–373 (2004). DOI: doi.org/10.1016/j.polymdegradstab.2003.11.007
A. Kurt, Thermal decomposition kinetics of poly(nButMA-b-St) diblock copolymer synthesized by ATRP, J. Appl. Polym. Sci., 114, 624–629 (2009).
DOI: 10.1002/app.30576
X. L. Meng, Y. D. Huang, H. Yu, Z. S. Lv, Thermal degradation kinetics of polyimide containing2,6-benzobisoxazole units. Polym. Degrad. Stabil., 92, 962–967 (2007).
DOI: 10.1016/j.polymdegradstab.2007.03.005
A. Kurt, M. Koca, Blending of poly(ethyl methacrylate) with poly(2-hydroxy-3-phenoxypropylmethacrylate): Thermal and optical properties. Arab. J. Sci. Eng., 39, 5413–5420 (2014). DOI: 10.1007/s13369-014-1103-x
S. Vyazovkin, Thermal analysis, Anal. Chem. 78, 3875–3886 (2006), DOI: 10.1021/ac0605546.
S. Ma, J. O. Hill, S. Heng, A kinetic-analysis of the pyrolysis of some Australian coals by nonisothermal thermogravimetry, J. Therm. Anal. 37, 1161–1177 (1991). DOI: 10.1007/BF01913852
Z. D. Zivkovic, J. Sestak, Kinetics and mechanism of the oxidation of molybdenum sulphide, J. Therm. Anal. Calorim. 53, 263–267 (1998).
DOI: 10.1023/A:1010108813595.
F. Fraga, E. R. Nunez, Activation energies for the epoxy system BADGE n=0/m-XDA obtained using data from thermogravimetric analysis. J. Appl. Polym. Sci., 80, 776–782 (2001).
DOI: 10.1002/1097-4628(20010502)80:5<776::AID-APP1154>3.0.CO;2-8