Synthesis and characterization of a novel isocoumarin derived polymer and its thermal decomposition kinetics
DOI:
https://doi.org/10.20450/mjcce.2018.1503Keywords:
Isocoumarin polymer, synthesis and characterization, thermal decomposition kinetics, activation energyAbstract
A novel isocumarin derived polymer poly(2-(isocoumarin-3-yl)-2-oxoethyl methacrylate) poly(ICEMA) was synthesized by free radical polymerization. The spectral characterization was performed with FTIR and 1H,13C-NMR techniques. The glass transition temperature of poly(ICEMA) was measured to be 161.69 °C by DSC technique. The initial decomposition temperatures obtained from TGA showed a change in the positive direction from 256.59 °C to 286.10 °C as the heating rate increased to 20 °C/min. Thermal decomposition activation energies of poly(ICEMA) in the conversion range of 7% - 19% were found to be 136.12 kJ/mol and 134.83 kJ/mol by Flynn–Wall–Ozawa and Kissinger’s models, respectively. In addition, various integral models such as Coats-Redfern, Tang, Madhusudanan and Van-Krevelen models were used to determine the thermal decomposition mechanism of poly(2-(isocoumarin-3-yl)-2-oxoethyl methacrylate)which showed that it proceeded at the optimum heating rate of 5 ºC/min over the D1 one-dimensional diffusion type deceleration mechanismReferences
S. Pal, V. Chatare, M. Pal, Isocoumarin and its derivatives: an overview on their synthesis and applications, Curr. Org. Chem. 15, 782-800 (2011), DOI: 10.2174/138527211794518970.
R. D. Barry, Isocoumarins. Development since 1950, Chem. Rev. 64, 229-260 (1964), DOI: DOI: 10.1021/cr60229a002.
E. Napolitano, Synthesis of isocoumarins over the last decade: a review, Org. Prepn. Procedures Intl. 29, 631-664 (1997), DOI: 10.1080/00304949709355245.
S. Pathak, D. Das, A. Kundu, S. Maity, N. Guchhait, A. Pramanik, Synthesis of 4-hydroxyindole fused isocoumarin derivatives and their fluorescence “Turn-off” sensing of Cu(II) and Fe(III) ions, RSC Adv. 5, 17308-17318 (2015), DOI: 10.1039/c5ra01060h.
P. Saikia, S. Gogoi, Isocoumarins: General aspects and recent advances in their synthesis, Adv. Synth. Catal. 360, 2063-2075 (2018), DOI: 10.1002/adsc.201800019.
K. Nozawa, M. Yamada, Y. Tsuda, K. Kawai, S. Nakajima, Synthesis of antifungal isocoumarins. II. Synthesis and antifungal activity of 3-substituted isocoumarins, Chem. Pharm. Bull. 29, 2491-2495 (1981), DOI: https://doi.org/10.1248/cpb.29.2491.
T. Furuta, Y. Fukuyama, Y. Asakawa, Polygonolide an İsocoumarin from polygonum-hydropiper possessing anti-inflammatory activity, Phytochemistry, 25, 517-520 1986), DOI: https://doi.org/10.1016/S0031-9422(00)85513-2.
H. Matsuda, H. Shimoda, M. Yoshikawa, Structure-Requirements of isocoumarins, phthalides, and stilbenes from hydrangeae dulcis folium for inhibitory activity on histamine release from rat peritoneal mast cells, Bioorg. Med. Chem. 7, 1445-1450 (1999), DOI: 10.1016/S0968-0896(99)00058-9.
H. Sato, K. Konoma, S. Sakamura, Three new phytotoxins produced by Pyrenochaeta terrestris: pyrenochaetic acids A, B and C, Agric. Biol. Chem. 45, 1675-1679 (1981), DOI: https://doi.org/10.1080/00021369.1981.10864745.
A. C. Whyte, J. B. Glober, J. A. Scott, D. Mallock, Cercophorins A-C: Novel antifungal and cytotoxic metabolites from the coprophilous fungus cercophora areolata, J. Nat. Prod. 59, 765-769 (1996), DOI: 10.1021/np9603232.
Z. Essaidi, O. Krupka, K. Iliopoulos, E. Champigny, B. Sahraoui, M. Sallé, D. Gindre, Synthesis and functionalization of coumarin-containing copolymers for second order optical nonlinearities, Opt. Mater. 35, 576–581 (2013), DOI: 10.1016/j.optmat.2012.10.011.
T. Han, H. Q. Deng, C. Y. Y. Yu, C. Gui, Z. G. Song, R. T. K. Kwok, J. W. Y. Lam, B. Tang, Functional isocoumarin-containing polymers synthesized by rhodium-catalyzed oxidative polycoupling of aryl diacid and internal diyne, Polym. Chem. 7, 2501-2510 (2016), DOI: 10.1039/c6py00206d.
Kurt, A., and Koca, M., Synthesis, characterization and thermal degradation kinetics of poly(3-acetylcoumarin-7-yl-methacrylate) and its organoclay nanocomposites, Journal of Engg. Research, 2016, vol. 4, no. 4, pp. 46-65.
A. Kurt, O. K. Topsoy, Preparation of novel coumarin cyclic polymer/montmorillonite based nanocomposites, Russ. J. Appl. Chem. 90, 2019−2027 (2017), DOI: 10.1134/S1070427217120199.
A. Kurt, P. Yılmaz, Thermal decomposition kinetics of benzofuran derived polymer/organosilicate nanocomposites, Kuwait J. Sci. 43, 172-184 (2016).
Z. Barutçu, C. Kırılmış, A. Kurt, Synthesis, characterization and thermal decomposition kinetics of a novel benzofuran ketoxime derived polymer, Acta Chim. Slov. 62, 428-436 (2015), DOI: 10.17344/acsi.2014.900.
H. J. Patel, M. G. Patel, A. K. Patel, K. H. Patel, R. M. Patel, Synthesis, characterization and antimicrobial activity of important heterocyclic acrylic copolymers, Express Polym. Lett. 2, 727–734 (2008), DOI: 10.3144/expresspolymlett.2008.86.
M. Koca, A. S. Erturk, A. Umaz, Microwave-assisted intermolecular aldol condensation: Efficient one-step synthesis of 3-acetyl isocoumarin and optimization of different reaction conditions, Arab. J. Chem. 11, 538-545 (2018), DOI: https://doi.org/10.1016/j.arabjc.2015.11.013.
S. Fomine, E. Rivera, L. Fomina, A. Ortiz, T. Ogawa, Polymers from coumarines: 4. Design and synthesis of novel hyperbranched and comb-like coumarin-containing polymers, Polymer, 39, 3551–3558 (1998), DOI: 10.1016/S0032-3861(97)10003-9
X. L. Meng, Y. D. Huang, H. Yu, Z. S. Lv, Thermal degradation kinetics of polyimide containing 2,6-benzobisoxazole units, Polym. Degrad. Stab. 92, 962-967 (2007), DOI: 10.1016/j.polymdegradstab.2007.03.005
S. Vyazovkin, Thermal analysis, Anal. Chem. 78, 3875-3886 (2006), DOI: 10.1021/ac0605546.
S. Ma, J. O. Hill, S. Heng, A kinetic-analysis of the pyrolysis of some australian coals by nonisothermal thermogravimetry, J. Therm. Anal. 37, 1161-1177 (1991), DOI: 10.1007/BF01913852.
Z. D. Zivkovic, J. Sestak, Kinetics and mechanism of the oxidation of molybdenum sulphide, J. Therm. Anal. Calorim. 53, 263-267 (1998), DOI: 10.1023/A:1010108813595.
J. H. Flynn, L. A. Wall, A quick, direct method for the determination of activation energy from thermogravimetric data, J. Polym. Sci. B, 4, 323-328 (1966), DOI: https://doi.org/10.1002/pol.1966.110040504
T. Ozawa, Applicability of Friedman plot, J. Therm. Anal. 31, 547-551 (1986), DOI: 10.1007/BF01914230.
H. E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29, 1702-1706 (1957), DOI: 10.1021/ac60131a045.
A. W. Coats, J.P Redfern, Kinetic parameters from thermogravimetric data, Nature, 201, 68-69 (1964), DOI:10.1038/201068a0
W. Tang, Y. Liu, H. Zhang, C. Wang, New approximate formula for Arrhenius temperature integral, Thermochim. Acta, 408, 39-43 (2003), DOI: 10.1016/S0040-6031(03)00310-1.
P. M. Madhusudanan, K. Krishnan, K. N. Ninan, New equations for kinetic-analysis of nonisothermal reactions, Thermochim. Acta, 221, 13-21 (1993), DOI: 10.1016/0040-6031(93)80519-G
D. W. Van Krevelen, C. Van Herrden, F. J. Hutjens, Kinetic study by thermogravimetry, Fuel, 30, 253-258 (1951).
Downloads
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.