Binding of cadmium to soil humic acid as a function of carboxyl group content

Tatjana Anđelković, Ružica Nikolić, Aleksandar Bojić, Darko Anđelković, Goran Nikolić

Abstract


The binding of Cd(II) to soil humic acid (HA) at pH 6.5 and in 0.1 mol/L KNO3 ionic medium, was studied by potentiometric titration with a cadmium ion selective electrode. The influence of carboxyl groups in cation-humic interactions was investigated by selective blocking of humic acid carboxyl groups with thionyl chloride and methanol. Infrared spectroscopic analysis confirmed that esterification took place. Differences between underivatized and derivatized HA complexation properties are ascribed to carboxyl groups. The Scatchard plots and incremental formation constants were used to obtain values for Cd-binding constants, for both HAs. The derivatization decreased the number of HA complexing sites by approximately 60 %, which correlates with acid-base properties of both HAs, studied by barium hydroxide and calcium acetate exchange methods. The stability constants for binding at the strongest sites (logKINT) was larger for underivatized HA (5.40) than for derivatized HA (4.92), indicating greater stability in the case when carboxyl groups are involved in complexation reaction.

Keywords


cadmium; humic acid; carboxyl group content; Scatchard plot; ion-selective electrode

Full Text:

PDF

References


E. Tipping, Cation binding by humic substances, Cambridge University Press, Cambridge, 2002.

J. A. Marinsky, J. Ephraim, A unified physicochemical description of the protonation and metal ion complexation equilibria of natural organic acids (humic and fulvic acids). 1. Analysis of the influence of polyelectrolyte properties on protonation equilibria in ionic media: Fundamental concepts, Environ. Sci. Technol., 20, 349-354 (1986).

F. J. Stevenson, Humus chemistry: Genesis, composition, reactions, John Wiley & Sons, New York, 1994.

A. E. Martell, R. D. Hancock, Metal Complexes in Aqueous Solutions, Kluwer, New York, 1996.

I. Christl, C. J. Milne, D. G. Kinniburgh, R. Kretzchmar, Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 2. Metal binding, Environ. Sci. Technol., 35, 2515-2517 (2001).

I. Christl, R. Kretzmar, Relating ion binding by fulvic and humic acids to chemical compo-sition and molecular size. 1. Proton binding, Environ. Sci. Technol., 35, 2505-2511 (2001).

M. F. Benedetti, W. H. van Riemsdijk, L. K. Koopal, Humic substances considered as a heterogeneous Donnan gel phase, Environ. Sci. Technol., 30, 1805-1813 (1996).

F. J. Stevenson, Geochemistry of soil humic substances, in: Humic substances in Soil, Sediment and Water, G. R. Aiken, D. M. McKnight, R. L. Wershaw, P. MacCarthy (Eds.), Wiley, New York, 1985, pp. 13-52.

M. Schnitzer, Reaction between fulvic acid, a soil humic compound and inorganic soil constituents, Soil Sci. Soc. Am. Proc., 33, 75–81 (1969).

D. S. Gamble, M. Schnitzer, I. Hoffman, Cu-fulvic acid chelation equilibrium in 0.1M KCl at 25.0°C, Can. J. Chem., 48, 3197-32 (1970).

J. C. Masini, G. Abate, E. C. Lima, L. C. Hahn, M. S. Nakurama, J. Lichtig, H. R. Nagatomy, Comparison of methodologies for determination of carboxylic and phenolic groups in humic acids, Anal. Chim. Acta, 364, 223-233 (1998).

Perdue, E. M., Acidic functional groups in humic substances, in: Humic substances in Soil, Sediment and Water, G. R. Aiken, D. M. McKnight, R. L. Wershaw, P. MacCarthy (Eds.), Wiley, New York, 1985, pp. 493-526.

S. Pompe, M. Bubner, M. A. Denecke, T. Reich, A. Brachmann, G. Geipel, R. Nicolai, K. H. Heise, H. Nitsche, A comparison of natural humic acids with synthetic humic acid model substances: characterization and interaction with uranium (VI), Radiochim. Acta, 74, 135-140 (1996).

P. MacCarthy, J. A. Rice, Spectroscopic methods (other than NMR) for determining functionality in humic substances, in: Humic substances in Soil, Sediment and Water, G. R. Aiken, D. M. McKnight, R. L. Wershaw, P. MacCarthy (Eds.), Wiley, New York, 1985, pp. 527-559.

R. L. Wershaw, Application of nuclear magnetic resonance spectroscopy for determining functionality in humic substances, in: Humic substances in Soil, Sediment and Water, G. R. Aiken, D. M. McKnight, R. L. Wershaw, P. MacCarthy (Eds.), Wiley, New York, 1985, pp. 561-582.

H. Herzog, P. Burba, J. Buddrus, Quantification of hydroxylic groups in a river humic substance by 29Si-NMR, Fresenius J. Anal. Chem., 354, 374-377 (1995).

S. Sachs, M. Bubner, K. Schmeide, G. R. Choppin, K. H. Heise, G. Bernharg, Carbon-13 NMR spectroscopic studies on chemically modified and unmodified synthetic and natural humic acids, Talanta, 57, 999-1009 (2002).

B. Manunza, S. Deiana, V. Maddau, C. Gessa, R. Seeber, Stability Constants of Metal-Humate Complexes: Titration Data Analyzed by Bimodal Gaussian Distribution, Soil Sci. Soc. Am. J., 59, 1570-1574 (1995).

J. A. Leenheer, G. K. Brown, P. MacCarthy, S. E. Cabaniss, Models of Metal Binding Structures in Fulvic Acid from the Suwannee River, Georgia, Environ. Sci. Technol., 32, 2410-2416 (1998).

J. A. Leenheer, T. I. Noyes, Derivatization of humic substances for structural studies, in: Humic substances II. In search of structure, M. H. B. Hayes, P. MacCarthy, R. L. Malcolm, R. S. Swift (Eds.), Wiley, New York, 1989, pp. 257-280.

M. Schnitzer, S. I. M. Skinner, Organo-metallic interactions in soils: 4. Carboxyl and hydroxyl groups in organic matter and metal retention, Soil Sci., 99, 278-284 (1965).

T. Andjelkovic, J. Perovic, M. Purenovic, S. Blagojevic, R. Nikolic, D. Andjelkovic, A. Bojic, Spectroscopic and Potentiometric Studies on Derivatized Natural Humic Acid, Anal. Sci., 22, 1553-1558 (2006).

B. D. Hosangadi, R. H. Dave, An efficient general method for esterification of aro¬ma¬tic carboxylic acids, Tetrahedron Lett., 37, 6375- 6378 (1996).

R. S. Saar, J. H. Weber, Complexation of cadmium(I1) with water- and soil-derived fulvic acids: effect of pH and fulvic acid concentration, Can. J. Chem., 57, 1263-1268 (1979).

S. Y. Choi, H. Moon, S. Jun, K. H. Chung, Comparison of the stability constants of Cd(II)-, Cu(II)- and Pb(II)-humate complexes, Bull. Korean Chem. Soc., 15, 581-584 (1994).

A. S. Mathuthu, J. H. Ephraim, Binding of cadmium to Laurentide fulvic acid. Justification of the functionalities assigned to the predominant acidic moieties in the fulvic acid molecule, Talanta, 42, 1803-1810 (1995).

G. Abate, J. C. Masini, Acid-Basic and Complexation Properties of a Sedimentary Humic Acid. A Study on the Barra Bonita Reservoir of Tiete River, Sao Paulo State, Brazil, J. Braz. Chem. Soc., 12, 109-116 (2001).

D. A. Dzombak, W. Fish, F. M. M. Morel, Metal-humate interactions. 1. Discrete ligand and continuous distribution models, Environ. Sci. Technol., 20, 669-674 (1986).

J. C. Westall, J. D. Jones, G. D. Turner, J. M. Zachara, Models for association of metal ions with heterogeneous sorbents. 1. Complexation of Co(II) by Leonardite humic acid as a function of pH and NaClO4 concentration, Environ. Sci. Technol., 29, 951–959 (1995).

G. Scatchard, The attraction of proteins for small molecules and ions, Ann. N. Y. Acad. Sci., 51, 660-672 (1949).

R. F. C. Mantoura, J. P. Riley, The use of gel filtration in the study of metal binding by humic acids and related compounds, Anal. Chim. Acta, 76, 97-106 (1975).

E. M. Perdue, C.R. Lytle, Distribution model for binding of protons and metal ions by humic substances, Environ. Sci. and Technol., 17, 654-660 (1983).

J.P. Gustafsson, Modeling the acid-base properties and metal complexation of humic substances with the Stockholm Humic Model. J. Colloid Interface Sci., 244, 102-112 (2001).

L.K. Koopal, W.H.Riemsdijk, J.C.M. de Wit, M.H. Benedetti, Analytical isotherm equations for multicomponent adsorption to heterogeneous surfaces, J. Colloid Interface Sci., 166, 51-60 (1994).

F. J. Stevenson, A. Fitch, M. S. Brar, Stability constants of Cu(II)-humate comple¬xes: comparison of selected models, Soil Sci., 155, 77-91 (1993).

R. S. Swift, Organic matter characterization, in: Methods of Soil Analysis. Part 3. Chemical Methods, D. L. Sparks, J. M. Bartels, J. M. Bigham, (Eds.), Soil Science Society of America, Madison WI, USA, 1996, pp. 1018-1020.

M. Schnitzer, U. C. Gupta, Determination of acidity in soil organic matter, Soil Sci. Soc. Proc., 27, 274-277 (1965).

E. M. Logan, I. D. Pulford, G. T. Cook, A. B. Mackenzie, Complexation of Cu2+ and Pb2+ by peat and humic acid, Eur. J. Soil Sci., 48, 685-696 (1997).

A. Kaschl, V. Romheld, Y. Chen, Cadmium binding by fractions of dissolved organic matter and humic substances from municipal solid waste compost, J. Environ. Qual., 31, 1885-1892 (2002).

A. C. Parmeggiani, J. C. Masini, Evaluating Scatchard and differential equilibrium functions to study the binding properties of Cu(II) to the surface of mixed species of lyophilized spirulina (cyanobacteria), J. Brazil. Chem. Soc., 14, 416-424 (2003).

F. J. Stevenson, K. M. Goh, Infrared spectra of humic and fulvic acids and their methylated derivatives: Evidence for non-specificity of analytical methods for oxygen-containing functional groups, Soil Sci., 113, 334-345 (1971).

R. S. Saar, J. H. Weber, Lead(II) complexation by fulvic acid: How it differs from fulvic acid complexation of copper(II) and cadmium(II), Geochim. Cosmochim. Acta, 44, 1381-1384 (1980).

F. J. Stevenson, Y. Chen, Stability Constants of Copper(II)-Humate Complexes Determined by Modified Potentiometric Titration, Soil Sci. Soc. Am. J., 55, 1586–1591 (1991).




DOI: http://dx.doi.org/10.20450/mjcce.2010.168

Refbacks

  • There are currently no refbacks.




Copyright (c) 2016 Tatjana Anđelković, Ružica Nikolić, Aleksandar Bojić, Darko Anđelković, Goran Nikolić

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.