The electrochemical reduction of hydrogen peroxide on a palladium-amorphous carbon composite in an alkaline medium
DOI:
https://doi.org/10.20450/mjcce.2023.2776Abstract
The study of hydrogen peroxide reduction in an alkaline aqueous medium on a composite of palladium particles dispersed in an amorphous carbon matrix (Pd@AC) was performed. Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FTIR), and X-ray Powder Diffraction (XRD) were used to examine morphology, composition, and crystalline structure. The crystalline structure and size of palladium were analyzed using XRD. The reduction of hydrogen peroxide was studied through cyclic and square-wave voltammetry in an alkaline solution in the absence and presence of dissolved oxygen. The overall electrocatalytic effect of Pd@AC toward hydrogen peroxide reduction strongly depends on the presence of oxygen and the hydrogen peroxide disproportionation reaction in the three-phase system of amorphous carbon, palladium particles, and electrolyte solution.
References
(1) Chen W.; Cai S.; Ren Q-Q.; Wen W.; Zhao Y-D, Recent advances in electrochemical sensing for hydrogen peroxide: A review. Analyst. 2012, 137, 49–58.
DOI: https://doi.org/10.1039/C1AN15738H
(2) Butwong N.; Zhou L.; Ng-eontae W.; Burakham R.; Moore E.; Srijaranai S.; Loung J. H. T.; Glennon J. D, A sensitive nonenzymatic hydrogen peroxide sensor using cadmium oxide nanoparticles/multiwall carbon nanotube modified glassy carbon electrode. J. Electroanal. Chem. 2014, 717–718, 41–46.
DOI: http://dx.doi.org/10.1016/j.jelechem.2013.12.028
(3) Klassen N. V.; Marchngton D.; McGowan H. C. E., H2O2 determination by the I3-method and by KMnO4 titration. Anal. Chem. 1994, 66, 2921–2925.
DOI: https://doi.org/10.1021/ac00090a020
(4) Steinberg S. M., High-performance liquid chroma-tography method for determination of hydrogen peroxide in aqueous solution and application to simulated Martian soil and related materials. Environ. Monit. Assess. 2013, 185, 3749–3757.
DOI: 10.1007/s10661-012-2825-4
(5) Hsu C. C.; Lo Y-R.; Lin Y. C.; Shi Y. C.; Li P. L., A spectrometric method for hydrogen peroxide concen-tration measurement with a reusable and cost-efficient sensor. Sensors. 2015, 15, 25716–25729.
DOI: https://doi.org/10.3390/s151025716
(6) Kosman J.; Juskowiak B., Peroxidase-mimicking DNAzymes for biosensing applications: A review. Anal. Chim. Acta. 2011, 707, 7–17.
DOI: https://doi.org/10.1016/j.aca.2011.08.050
(7) Vdovenko M. M.; Demiyanova A. S.; Kopylov K. E.; Sakharov I. Y., FeIII-TAML activator: a potent peroxidase mimic for chemiluminescent determination of hydrogen peroxide. Talanta. 2014, 125, 361–365.
DOI: http://dx.doi.org/10.1016/j.talanta.2014.03.040
(8) Chandra S.; Lokesh K. S.; Nicolai A.; Lang H., Dendrimer-rhodium nanoparticle modified glassy carbon electrode for amperometric detection of hydrogen peroxide. Anal. Chim. Acta 2009, 632, 63–68.
DOI: https://doi.org/10.1016/j.aca.2008.10.062
(9) Liu M.; Zhao G.; Zhao K.; Tong X.; Tang Y., Direct electrochemistry of hemoglobin at vertically-aligned self-doping TiO2 nanotubes: A mediator-free and biomolecule-substantive electrochemical interface. Electrochem. Commun. 2009, 11, 1397–1400.
DOI: https://doi.org/10.1016/j.elecom.2009.05.015
(10) Liu M.; Liu R.; Chen W., Graphene wrapped Cu2O nanocubes: Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens. Bioelectron. 2013, 45, 206–212. DOI: https://doi.org/10.1016/j.bios.2013.02.010
(11) Zhang R.; Chen W., Fe3C-functionalized 3D nitrogen-doped carbon structures for electrochemical detection of hydrogen peroxide. Sci. Bull. 2015, 60, 522–531.
DOI: https://doi.org/10.1007/s11434-015-0740-0
(12) Zhu X.; Yuri I.; Gan X.; Suzuki I.; Li G., Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation. Biosen. Bioelectron. 2007, 22, 1600–1604.
DOI: https://doi.org/10.1016/j.bios.2006.07.007
(13) Rashed Md. A.; Ahmed J.; Faisal M.; Alsareii S. A.; Jalalah M.; Tirth V.; Harraz F. A., Surface modification of CuO nanoparticles with conducting polythiophene as a non-enzymatic amperometric sensor for sensitive and selective determination of hydrogen peroxide. Surf. Interfaces. 2022, 31, 101998.
DOI: https://doi.org/10.1016/j.surfin.2022.101998
(14) Kong D-R.; Xin Y-Y.; Li B.; Zhang X-F.; Deng Z-P.; Huo L-H.; Gao S., Non-enzymatic CuCr2O4/GCE amperometric sensor for high sensing and rapid detection of nM level H2O2. Microchem. J. 2023, 194, 109343. DOI: https://doi.org/10.1016/j.microc.2023.109343
(15) Huang Z-N.; Liu G-C.; Zou J.; Jiang X-Y., Liu Y-P.; Yu J-G., A hybrid composite of recycled popcorn-shaped MnO2 microsphere and Ox-MWCNTs as a sensitive non-enzymatic amperometric H2O2 sensor. Microchem. J. 2020, 158, 105215.
DOI: https://doi.org/10.1016/j.microc.2020.105215
(16) Stradiotto R. N.; Yamanaka H.; Zanoni B. M. V. Electrochemical sensors: a powerful tool in analytical chemistry. J. Braz. Chem. Soc. 2003, 14.
DOI: https://doi.org/10.1590/S0103-50532003000200003
(17) Lorestani F.; Shahnavaz Z.; Mn P.; Alias Y.; Manan N. S. A., Synthesis of silver nanoparticle-carbon nanotube reduced-graphene oxide composite and its application as hydrogen peroxide sensor. Sens. Actuators B: Chem. 2015, 208, 389–398.
DOI: https://doi.org/10.1016/j.snb.2014.11.074
(18) Nazarpour S.; Hajian R.; Sabzvari M. H., A novel nanocomposite electrochemical sensor based on green synthesis of reduced graphene oxide/gold nanoparticles modified screen printed electrode for determination of tryptophan using response surface methodology approach. Microchem. J. 2020, 154, 104634.
DOI: https://doi.org/10.1016/j.microc.2020.104634
(19) Fernandes V. Q.; Silva M. K. L.; Cesarino I., Determination of isotretinoin (13-cis-retinoic acid) using a sensor based on reduced graphene oxide modified with copper nanoparticles. J. Electroanal. Chem. 2020, 856, 113692. DOI: https://doi.org/10.1016/j.jelechem.2019.113692
(20) Guler M.; Turkoglu V.; Kivrak A.; Karahan F., A novel nonenzymatic hydrogen peroxide amperometric sensor based on Pd@CeO2-NH2 nanocomposites modified glassy carbon electrode. Mater. Sci. Eng. C. 2018, 90, 454–460. DOI: https://doi.org/10.1016/j.msec.2018.04.084
(21) Yi W.; Li Z.; Dong C.; Li H-W.; Li J., Electrochemical detection of chloramphenicol using palladium nanoparticles decorated reduced graphene oxide. Microchem. J. 2019, 148, 774–783.
DOI: https://doi.org/10.1016/j.microc.2019.05.049
(22) Zheng J-N.; Li S-S.; Ma X.; Chen F-Y.; Wang A-J.; Chen J-R.; Feng J-J., Green synthesis of core–shell gold–palladium@palladium nanocrystals dispersed on graphene with enhanced catalytic activity toward oxygen reduction and methanol oxidation in alkaline media. J. Power Sources. 2014, 262, 270–278.
DOI: https://doi.org/10.1016/j.jpowsour.2014.03.131
(23) Venkatachalapathy R.; Davila P. G.; Prakash J., Catalytic decomposition of hydrogen peroxide in alkaline solutions. Electrochem. Commun. 1999, 1, 614–617.
DOI: https://doi.org/10.1016/S1388-2481(99)00126-5
(24) Hall B. S.; Khudaish A. E.; Hart L. A., Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism. Electrochim. Acta, 1998, 43, 579–588.
DOI: https://doi.org/10.1016/S0013-4686(97)00125-4
(25) Shao M.; Yu T.; Odell J. H.; Jin M.; Xia Y., Structural dependence of oxygen reduction reaction on palladium nanocrystals. Chem. Commun. 2011, 47, 6566–6568.
DOI: https://doi.org/10.1039/C1CC11004G
(26) Sokolov S. V.; Sepunaru L.; Compton R. G., Taking cues from nature: Hemoglobin catalysed oxygen reduction. Appl. Mater. Today. 2017, 7, 82–90.
DOI: https://doi.org/10.1016/j.apmt.2017.01.005
(27) Čović J.; Mirceski V.; Zarubica A.; Enke D.; Carstens S.; Bojić A.; Ranđelović M., Palladium-graphene hy-brid as an electrocatalyst for hydrogen peroxide reduc-tion. Appl. Surf. Sci. 2022, 574, 151633.
DOI: https://doi.org/10.1016/j.apsusc.2021.151633
(28) Elsheikh A.; Martins V. L.; McGregor J., Influence of physiochemical characteristics of carbon supports on Pd ethanol oxidation catalysts. Energy Procedia 2018, 151, 79–83. DOI: https://doi.org/10.1016/j.egypro.2018.09.031
(29) Chen S.; Wang G.; Sui W.; Parvez A. M.; Dai L.; Si C., Novel lignin-based phenolic nanosphere supported palladium nanoparticles with highly efficient catalytic performance and good reusability. Ind. Crops Prod. 2020, 145, 112164.
DOI: https://doi.org/10.1016/j.indcrop.2020.112164
(30) Wei Z.; Yan P.; Feng W.; Dai J.; Wang Q.; Xia T., Monostructural characterization of Ni nanoparticles prepared by anodic arc plasma. Mater. Charact. 2006, 57, 176–181.
DOI: https://doi.org/10.1016/j.matchar.2006.01.004
(31) Ng J. C.; Tan C. Y.; Ong B. H.; Matsuda A.; Basirun W. J.; Tan W. K.; Singh R.; Yap B. K., Novel palladium-guanine-reduced graphene oxide nanocomposite as efficient electrocatalyst for methanol oxidation reaction. Mater. Res. Bull. 2019, 112, 213–220.
DOI: https://doi.org/10.1016/j.materresbull.2018.12.029
(32) Poljanšek I.; Krajnc M., Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR spectroscopy. Acta Chim. Slov. 2005, 52, 238–244.
(33) Yangfei C.; Zhiqin C.; Shaoyi X.; Hongbo L., A novel thermal degradation mechanism of phenol–formaldehyde type resins. Thermochim. Acta. 2008, 476, 39–43.
DOI: https://doi.org/10.1016/j.tca.2008.04.013
(34) Calvo E. J.; Schiffrin D. J., The reduction of hydrogen peroxide on passive iron in alkaline solutions. J. Electroanal. Chem. 1984, 163, 257–275.
DOI: https://doi.org/10.1016/S0022-0728(84)80056-X
(35) Nagaiah T.C.; Schäfer D.; Schuhmann W.; Dimcheva N. Electrochemically deposited Pd−Pt and Pd−Au codeposits on graphite electrodes for electrocatalytic H2O2 reduction. Anal. Chem. 2013, 85, 7897–7903.
DOI: https://doi.org/10.1021/ac401317y
(36) Marceta Kaninski M .P.; Saponjic Dj. P.; Perovic I. M.; Maksic A. D.; Nikolic V. M., Electrochemical characterization of the Ni–W catalyst formed in situ during alkaline electrolytic hydrogen production. Part II. Appl. Catal. A: Gen. 2011, 405, 29–35.
DOI: https://doi.org/10.1016/j.apcata.2011.07.015
(37) Scholz F., Electroanalytical Methods. Guide to Experiments and Applications. Second, revised and extended edition. Springer, Heidelberg–Dordrecht London–New York, 2010.
DOI: https://doi.org/10.1007/978-3-642-02915-8
(38) Poux T.; Bonnefont A.; Ryabova A.; Kéranguéven G.; Tsirlina G. A.; Savinova E. R., Electrocatalysis of hydrogen peroxide reactions on perovskite oxides: experiment versus kinetic modeling. Physical Chemistry Chemical Physics. 2014, 16, 13595–13600.
DOI: https://doi.org/10.1039/C4CP00341A
(39) Mirceski V.; Gulaboski R.; Compton G. R. Distinguishing heterogeneous and homogeneous CE mechanisms: theoretical insights in square-wave voltammetry. J. Phys. Chem. C. 2023, 127, 3437−3443.
DOI: https://doi.org/10.1021/acs.jpcc.2c07298
(40) Mirceski V.; Skrzypek S.; Stojanov L., Square-wave voltammetry. Chem Texts. 2018, 4, 17–3.
DOI: 10.1007/s40828-018-0073-0
Downloads
Published
Versions
- 2023-12-24 (2)
- 2023-12-15 (1)
How to Cite
Issue
Section
License
Copyright (c) 2023 Jelena Čović, Valentin Mirčeski, Aleksandra Zarubica, Aleksandar Bojić, Miloš Marinković, Marjan Ranđelović
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.