Recent achievments in square-wave voltammetry – A review
DOI:
https://doi.org/10.20450/mjcce.2014.515Keywords:
square-wave voltammetry, elecgtrochemistry, electroanalysis,Abstract
Recent advances in square-wave voltammetry for analytical purposes as well as for studying electrode mechanisms and kinetics are reviewed, mainly covering results published in the last decade. Analyzing only some typical analytically oriented studies, one confirms the well-known fact that the technique is attributed with superior analytical performance in the family of advance pulse voltammetric techniques. Covering all analytical studies where square-wave voltammetry is the working technique is hardly possible. For this reason, we decided to cover the relevant studies in square-wave voltammetry, mainly published in the last five to seven years. The reviewed period is marked with remarkable contributions in the theory of complex electrode mechanisms, revealing that square-wave voltammetry is one of the most powerful voltammetric techniques for both mechanistic and kinetic characterizations of electrode processes. Finally, a brief consideration is given to several methodologically oriented studies, referring mainly to cyclic-square voltammetry as well as methods based on the analysis of electrode processes by varying the amplitude of the potential modulation, which is expected to expand the scope and application of the technique in coming years.References
J. Osteryoung, J. J. O`Dea Square-wave voltammetry. in: A. J. Bard (ed) Electroanalytical chemistry, Marcel Dekker, New York, vol 14, p.209 (1986).
G. N. Eccles, Crit .Rev. Anal. Chem. Recent advances in pulse, cyclic and square-wave voltammetric analysis, 22, 345 (1991).
M. Lovrić, Square-wave voltammetry. In: Scholz F (ed) Electroanalytical Methods, Springer, Berlin, 2002.
D. de Souza, S. A. S. Machado L. A. Avaca, Square-wave voltammetry, Quim. Nova, 26, 81-89 (2003).
V. Mirceski, S. Komorsky-Lovric, M. Lovric Square-wave voltammertry: theory and application, (Ed.) F. Scholz. Springer Verlag, Heidelberg, 2007.
V. Mirceski, R. Gulaboski, M. Lovric, I. Bogeski, R. Kappl, M. Hoth, Square-Wave Voltammetry: A Review On The Recent Progress, Electroanal., 25, 2411 – 2422 (2013).
M. Kalousek, Processes at the dropping electrode with a discontinuously changing potential, Collect. Czech. Chem. Commun., 13, 105-115 (1948).
G. C. Barker, A. W. Gardner, Square-wave polarography, Analyst, 117, 1811-1828 (1992).
G. C. Barker, I. L. Jenkins, Square-wave polarography, Analyst, 77, 685-696 (1952).
G. C. Barker, Square-Wave Polarography and Some Related Techniques, Anal. Chim. Acta., 18, 118-131 (1958).
J. H. Christie, J. A. Turner, R. A. Osteryoung, Square Wave Voltammetry at the Dropping Mercury Electrode: Theory, Anal. Chem., 49, 1899-1903 (1977).
R. Gulaboski, V. Mirceski, I. Bogeski, M. Hoth, Protein film voltammetry: electrochemical enzymatic spectroscopy. A review on recent progress J. Solid State Electrochem. 2012, 16, 2315-2328.
S. Kumar, V. Vicente-Beckett, Beilstein J. Nanotech. 3, 388-396 (2012).
S. Komorsky-Lovric, I. Novak, Abrasive stripping square-wave voltammetry of blackberry, raspberry, strawberry, pomegranate, and sweet and blue potatoes, J. Food Sci. 6, C916-C920 (2011).
A. M. Carvalho, L. M. Goncalves, I. M. Valente, J. A. Rodrigues, Analysis of cardamonin by square-wave voltammetry, A. A. Barros, Phytochem. Anal. 23, 396-399 (2012).
L. Jia, X.-H. Zhang, Q. Li, S.-F. Wang, Determination of acetaminophen by square-wave voltammetry, J. Anal. Chem. 62, 266-269 (2007).
R. N. Goyal, M. Oyama, S. P. Singh, Fast determination of salbutamol, abused by athletes for doping, in pharmaceuticals and human biological fluids by square wave voltammetry, J. Electroanal. Chem. 611, 140-148 (2007).
A.M. Carvalho, L.M. Goncalves, I.M. Valente, J.A. Rodrigues, A.A. Barros, Phytochem. Anal., 23, 396-399 (2012).
M. A. G. Trindade, M. V. B. Zanoni, Square-wave voltammetry applied to the analysis of the dye marker, solvent blue 14, in kerosene and fuel alcohol, Electroanal., 19, 1901-1907 (2007).
T. Galeano-Diaz, A. Guiberteau-Gabanillas, A. Espinoza-Mansilla, M. D. Lopez-Soto, Adsorptive stripping square wave voltammetry (Ad-SSWV) accomplished with second-order multivariate calibration: Determination of fenitrothion and its metabolites in river water samples, Anal. Chim. Acta, 618, 131-136 (2008).
L. B. O. dos Santos, C. M. C. Infante, J. C. Masini, Development of a sequential injection square-wave voltammetry method for determination of paraquat in water samples, Anal. Bioanal. Chem. 396, 1897-1903 (2010).
M. A. El Mhammedi, M. Bakasse, R. Bachirat, A. Chtaini, Square-wave voltammetry for analytical determination of paraquat at carbon paste electrode modified with fluoroapatite, Food Chem. 110, 1001-1006 (2008).
M.A. El Mhammedi, M. Bakasse, A. Chtaini, Electrochemical studies and square wave voltammetry of paraquat at natural phosphate modified carbon paste electrode, J. Hazard. Mat. 145, 1-7 (2007).
L. B. O. dos Santos, J. C. Masini, Determination of picloram in natural waters employing sequential injection square wave voltammetry using the hanging mercury drop electrode, Talanta, 72, 1023-1029 (2007).
P. Qiu, Y. N. Ni, Determination of ziram in vegetable samples by square wave voltammetry, Chin. Chem. Lett. 19, 1337-1340 (2008).
T. M. B. F. Oliveira, H. Becker, E. Longhinotti, D. De Souza, P. de Lima-Neto, N. Correia, Carbon-fibre microelectrodes coupled with square-wave voltammetry for the direct analysis of dimethomorph fungicide in natura waters, Microchem. J. 109, 84-92 (2013).
H. El Harmoudi, M. Achak, A. Farahi, S. Lahrich, L. El Gaini, M. Abdennouri, A. Bouzidi, M. Bakasse, M.A. El Mhammedi, Sensitive determination of paraquat by square wave anodic stripping voltammetry with chitin modified carbon paste electrode,Talanta, 115, 172-177 (2013).
P. Norouzi, B. Larijani, M.R. Ganjali, F. Faridbod, Admittometric Electrochemical Determination of Atrazine by Nano-composite immune- biosensor using FFT-Square wave Voltammetry Int. J. Electrochem. Sci. 7, 10414-10426 (2012).
M. Amare, S. Admassie, Polymer modified glassy carbon electrode for the electrochemical determination of caffeine in coffee, Talanta, 93, 122-128 (2012).
J. C. Cardoso, B. M. L. Armondes, T. A. A. J. L. Raposo Jr, N Re Poppi, V. S. Ferreira, Determination of 4-methylbenzilidene camphor in sunscreen by square wave voltammetry in media of cationic surfactant, Microchem. J. 85, 301-307 (2007).
M. A. El Mhammedi, M. Achak, R. Najih, M. Bakasse, A. Chtaini, Micro-extraction and trace determination of cadmium by square wave voltammetry at the carbon paste electrode impregnated with Ca10(PO4)6(OH)2, Mat. Chem. Phys. 115, 567-571 (2009).
Y. Oztekin, Z. Yazicigil, A. Ramanaviciene, A. Ramanavicius, Square wave voltammetry based on determination of copper (II) ions by polyluteolin- and polykaempferol-modified electrodes, Talanta, 85, 1020-1027 (2011).
M. A. El Mhammedi, M. Achak, A. Chtaini, Ca10(PO4)6(OH)2-modified carbon-paste electrode for the determination of trace lead(II) by square-wave voltammetry, J. Hazard. Mat. 161, 55-61 (2009).
T. K. Bhardwaj, H. S. Sharma, S. K. Aggarwal, Development of anodic stripping voltammetry for determination of gallium in U–Ga alloy, J. Nucl. Mat. 360, 215-221 (2007).
A. T. Paulino, A. M. M. Vargas, L. B. Santos, J. Nozaki, E. C. Muniz, E. B. Tambourgi, Square wave voltammetry in the determination of Ni2+ and Al3+ in biological sample, Anal. Sci. 24, 1443-1447 (2008).
J. P. Wilburn, K. L. Brown, D. E. Cliffel, Mercury-free analysis of lead in drinking water by anodic stripping square wave voltammetry J. Chem. Edu. 84, 312-314 (2007).
F. Fan, J. Dou, A. Ding, K. Zhang, Y. Wang, Determination of Lead by Square Wave Anodic Stripping Voltammetry Using an Electrochemical Sensor, Analytical Sciences, 29, 571-578 (2013).
J. Meng, F. Li, L. Luo, X. Wang, M. Xiao, Determination of zinc in acacia honey by square wave stripping voltammetry with a bismuth-film-modified montmorillonite doped carbon paste electrode, Monatshefte fur Chemie, 145 (1), 161-166 (2014).
Q. Zhang, S.-W. Zhong, J.-L. Su, X.-J. Li, H. Zou, Determination of Trace Chromium by Square-Wave Adsorptive Cathodic Stripping Voltammetry at an Improved Bismuth Film Electrode, J. Electrochem. Soc., 160, 237-242 (2013).
G.A.M. Mersal, M.M. Ibrahim, Voltammetric studies of lead at a new carbon paste microelectrode modified with N(2-isopropyphenyl)-2-thioimidazole and its trace determination in water by square-wave voltammetry, Int. J. Electrochem. Sci., 8, 5944-5960 (2013).
Q. Zhao, Y. Chai, R. Yuan, J. Luo, Square wave anodic stripping voltammetry determination of lead based on the Hg(II) immobilized graphene oxide composite film as an enhanced sensing platform,Sensors and Actuators, B: Chemical, 178, 379-385 (2013).
R.K. Shervedani, Z. Akrami, Gold–deferrioxamine nanometric interface for selective recognition of Fe(III) using square wave voltammetry and electrochemical impedance spectroscopy methods, Biosens. and Bioelectron., 39, 31-36 (2013).
J.H. Luo, X.X. Jiao, N.B. Li, H.Q. Luo, Sensitive determination of Cd(II) by square wave anodic stripping voltammetry with in situ bismuth-modified multiwalled carbon nanotubes doped carbon paste electrodes J. Electroanal. Chem., 689, 130-134 (2013).
L.C.S. Figueiredo-Filho, B.C.Janegitz, O. Fatibelilo-Filho, L.H. Marcolino-Junior, C.E. Banks, Inexpensive and disposable copper mini-sensor modified with bismuth for lead and cadmium determination using square-wave anodic stripping voltammetry, Analytical Methods, 5, 202-207 (2013).
W.J. Yi, Y. Li, G.Ran, H.Q. Luo, N.B. Li, A glassy carbon electrode modified with antimony and poly(p-aminobenzene sulfonic acid) for sensing lead(II) by square wave anodic stripping voltammetry, Microchim. Acta, 179, 171-177 (2012).
J. Wang, C.Bian, J. Tong, J. Sun, S. Xia, Simultaneous Detection of Copper, Lead and Zinc on Tin Film/Gold Nanoparticles/Gold Microelectrode by Square Wave Stripping Voltammetry, Electroanal. 24, 1783-1790 (2012).
J.A. Ardila, G.G. Oliveira, R.A. Medeiros, O. Fatibello-Filho, Determination of gemfibrozil in pharmaceutical and urine samples by square-wave adsorptive stripping voltammetry using a glassy carbon electrode modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film, J. Electroanal. Chem. 690, 32-37 (2013).
M.A. El-Shal, A.K. Attia, Adsorptive Stripping Voltammetric Behavior and Determination of Zolmitriptan Using Differential Pulse and Square Wave Voltammetry, Analytical and Bioanalytical Electrochemistry, 5, 32-45 (2013).
L. Svorc, J. Sochr, P. Tomcik, M. Rievaj, D. Bustin, Simultaneous determination of paracetamol and penicillin V by square-wave voltammetry at a bare boron-doped diamond electrode, Electrochim. Acta, 68, 227-234 (2012).
A. A. Ensafi, H. Karimi-Maleh, S. Mallakpour, Simultaneous Determination of Ascorbic Acid, Acetaminophen, and Tryptophan by Square Wave Voltammetry Using N-(3,4-Dihydroxyphenethyl)-3,5-Dinitrobenzamide-Modified Carbon Nanotubes Paste Electrode, Electroanal. 24, 666-675 (2012).
X. Tian, C. Cheng, H. Yuan, J. Du, D. Xiao, S. Xie, M. M. F. Choi, Simultaneous determination of l-ascorbic acid, dopamine and uric acid with gold nanoparticles–β-cyclodextrin–graphene-modified electrode by square wave voltammetry, Talanta, 93, 79-85 (2012).
M. Pohanka, H. Bandouchova, J. Sobotka, J. Sedlackova, I. Soukupova, J. Pikula, Ferric Reducing Antioxidant Power and Square Wave Voltammetry for Assay of Low Molecular Weight Antioxidants in Blood Plasma: Performance and Comparison of Methods, Sensors 9, 9094-9103 (2009).
M. Pohanka, H. Banouchova, K. Vlckov, J. Zdarova-Karasova, K. Kuca, V. Damkov, L. Peckova, F. Vitula, J. Pikula, Square wave voltammetry on screen printed electrodes: comparison to ferric reducing antioxidant power in plasma from model laboratory animal (Grey Partridge) and comparison to standard antioxidants J. Appl. Biomed. 9, 103-109 (2011).
S. Kergaravat, M. I. Pividori, S. R. Hernandez, Evaluation of seven cosubstrates in the quantification of horseradish peroxidase enzyme by square wave voltammetry, Talanta 88, 468-476 (2012).
I. Novak, M. Seruga, S. Komorsky-Lovric, Characterisation of catechins in green and black teas using square-wave voltammetry and RP-HPLC-ECD, Food Chem. 122, 1283-1289 (2010).
I. Novak, M. Seruga, S. Komorsky-Lovric, Electrochemical Characterization of Epigallocatechin Gallate Using Square-Wave Voltammetry, Electroanalysis 2009, 21, 1019-1025.
M. Zatloukalova, V. Kren, R. Gazak, M. Kubala, P. Trouillas, J. Ulrichova, J. Vacek, Electrochemical investigation of flavonolignans and study of their interactions with DNA in the presence of Cu(II). Bioelectrochem. 82, 117-124 (2011).
D. Airado-Rodriguez, T Galeano-Diaz, I. Duran-Meras, Determination of trans-resveratrol in red wine by adsorptive stripping square-wave voltammetry with medium exchange, Food Chem. 122, 1320-1326 (2010).
F. A. Armstrong, Voltammetry of proteins. In: A. J. Bard, M. Stratmann, G.S. Wilson (eds) Encyclopedia of electrochemistry, vol. 9. 2002, Wiley VCH, Weinheim
H. Duwensee, M. Mix, M. Stubbe, J. Gimsa, M. Adler, G-U. Flechsig, Electrochemical product detection of an asymmetric convective polymerase chain reaction, Biosens. Bioelectr. 25, 400-405 (2009).
S. Krizkova, V. Hrdinova, V. Adam, E. P. J. Burgess, K. J. Kramer, M. Masarik, R. Kizek, Chromatographia Supplement 67, S75-S81 (2008).
J. Petrlova, M. Masarik, D. Potesil, V. Adam, L. Trnkova, R. Kizek, Zeptomole Detection of Streptavidin Using Carbon Paste Electrode and Square-Wave Voltammetry, Electroanalysis 19, 1177-1182 (2007).
B. Bing, M. Peng, X. Yuanyuan, S. Yongqian, G. Li, A novel method to investigate ribonuclease activity of Dicer by square wave voltammetry,Electrochemistry Communications 34, 142–145 (2013).
H. Beitollahi, A. Mohadesi, S.K. Mahani, H. Karimi-Maleh, A. Akbari, Simultaneous determination of dopamine, uric acid, and tryptophan using an MWCNT modified carbon paste electrode by square wave voltammetry, Turkish Journal of Chemistry, 36, 526-536 (2012).
S.Y. Ly, Determination of Epinephrine in Carp Brain Cells by Square-Wave Anodic Stripping Voltammetry with Carbon Nanotubes, Anal. Lett., 45, 1197-1203 (2012).
F. J. Arevalo. P. G. Molina, M. A. Zon, H. Fernandez, Studies about the adsorption of progesterone (P4) at glassy carbon electrodes in aqueous buffer solution by square wave voltammetry, J. Electroanal. Chem. 629, 133-137 (2009).
F. J. Arevalo. P. G. Molina, M. A. Zon, H. Fernandez, Novel studies about the electrochemical reduction of progesterone (P4) in acetonitrile at glassy carbon electrodes, J. Electroanal. Chem. 619-620, 46-52 (2008).
R. N. Goyal, M. Ouyama, S. P. Singh, Simultaneous Determination of Adenosine and Adenosine-5′-triphosphate at Nanogold Modified Indium Tin Oxide Electrode by Osteryoung Square-Wave Voltammetry, Electroanal., 19, 575-581 (2007).
X. He, Q. Zhu, F. Liao, L. Zhu, Z. Ai, Differential Pulse Voltammetric Determination and Application of Square-Wave Voltammetry of yRNA on a CPB-Cellulose Modified Electrode, Electroanal., 19, 1375-1381 (2007).
P. Daneshgar, P. Norouzi, M. R. Ganjali, A. Ordikhani-Seyedlar, H. Eshraghi, A dysprosium nanowire modified carbon paste electrode for determination of levodopa using fast Fourier transformation square-wave voltammetry method, Colloid and Surfaces B: Biointerfaces, 68, 27-32 (2009).
Qiang Zhao,Yaqin Chai, RuoYuan, Junhua Luo, Square wave anodic stripping voltammetry determination of lead based on the Hg(II) immobilized graphene oxide composite film as an enhanced sensing platform Sensors and Actuators B 178, 379– 384 (2013).
Lian Zhu, Lili Xu, Baozhen Huang, Ningming Jia, Liang Tan, Shouzhuo Yao, Simultaneous determination of Cd(II) and Pb(II) using square wave anodic stripping Voltammetry at a gold nanoparticle-graphenecysteine composite modified bismuth film electrode, Electrochim. Acta,115, 471–477 (2014).
M. Brycht, S. Skrzypek, V. Guzsvany, J. Berenji, Conditioning of renewable silver amalgam film electrode for the characterization of clothianidin and its determination in selected samples by adsorptive square-wave voltammetry, Talanta 117, 242–249 (2013).
T. M.B.F. Oliveira, H. Becker, E. Longhinotti, D. De Souza, P. de Lima-Neto, A. N. Correia, Carbon-fibre microelectrodes coupled with square-wave voltammetry for the direct analysis of dimethomorph fungicide in natural waters, Microchemical Journal 109, 84–92 (2013).
G. V. Guerreiro, A. J. Zaitouna, R. Y. Lai, Characterization of an electrochemical mercury sensor using alternating current, cyclic, square-wave and differential pulse voltammetry, Anal. Chim. Acta 810, 79– 85, (2014).
J. Qiu, J. Chen, Q. Ma, Y. Miao, Development of square wave voltammetry method for the assessment of organophosphorus compound impact on the cholinesterase of pheretima with 2,6-dichloroindophenol as a redox indicator, Chemosphere, 77, 129-132 (2009).
K. Sun, J. Qiu, K. Fang, W. Zhang, Y. Miao, Square wave voltammetry assay of organophosphorus inhibition on cholinesterase in two phases of isooctane/water, Electrochem. Commun. 11,1022-1025 (2009).
I. Carpani, P. Conti, S. Lanteri, P. P. Legnani, E. Leoni, D. Tonelli, Direct quantification of test bacteria in synthetic water-polluted samples by square wave voltammetry and chemometric methods, Biosens. Bioelectr. 23, 959-964 (2008).
X Xiao, G. Zhu, L. Liao, B. Liu, Y. Yuan, Y. Wang, J. He, B. He,Y. Wu, A square wave voltammetric method for the detection of microorganism populations using a MWNT-modified glassy carbon electrode, Electrochim. Acta 74, 105-110 (2012).
A. M. J. Barbosa, T. A. de Araujo, M. A. G. Trindade, V. S. Ferreira, A new indirect method based on square-wave voltammetry for ceftiofur determination in bovine milk using an alkaline degradation product, Microchem. J. 98, 297-302 (2011).
R. Gulaboski, V. Mirceski, S. Mitrev, Development of a rapid and simple voltammetric method to determine the total antioxidative capacity of edible oils, Food Chem. 2013, 138, 1055-1061 (2013).
M. Fatima Baroso, C. Delerue-Matos, M. B. P. P. Oliveira, Electrochemical evaluation of total antioxidant capacity of beverages using a purine-biosensor, Food Chem. 132, 1055-1062 (2012).
E. Vrublova, J. Ulrichova, V. Simanek, M. Fojta, J. Vacek, Oxidation of Protopine at a Pyrolytic Graphite Electrode Using Cyclic and Square-Wave Voltammetry, Electroanal. 22, 2879-2883 (2010).
M. Zelic, M. Lovric, Isopotential points in reverse square-wave voltammetry, J. Electroanal. Chem., 637, 28- (2009).
M. Lovric, D. Jadresko, Theory of square-wave voltammetry of quasireversible electrode reactions using an inverse scan direction, Electrochim. Acta, 55, 948-951 (2010).
M. Lovric, S. Komorsky-Lovric, Theory of reverse scan square-wave voltammetry influenced by the kinetics of reactant adsorption, Cent. Eur. J. Chem., 8, 513-518 (2010).
S. Komorsky-Lovric, M. Lovric, Theory of square-wave voltammetry of two-step electrode reaction with kinetically stabilized intermediate,J. Electroanal. Chem. 660, 22- (2011).
S. Komorsky-Lovric, M Lovric, Theory of square-wave voltammetry of two electron reduction with the intermediate that is stabilized by complexation, Electrochim. Acta, 69, 60-64 (2012).
M. Lovric, S. Komorsky-Lovric, Theory of Square-wave Voltammetry of Kinetically Controlled Two-step Electrode Reactions, Croat. Chem. Acta, 85, 4, 569-575 (2012).
M. Lovric, D. Jadresko, S. Komorsky-Lovric, Theory of square-wave voltammetry of electrode reaction followed by the dimerization of product, Electrochim. Acta, 90, 226-231 (2013).
S. Komorsky-Lovric, M. Lovric, Simulation of square-wave voltammograms of three-electron redox reaction, Electrochim. Acta, 2011, 56, 7189-7193 (2011).
S. Komorsky-Lovric, M. Lovric, Square-wave voltammetry of dissolved redox couple, Russ. J. Electrochem. 46, 1373-1377 (2010).
D. Jadresko, M. Lovric, A theory of square-wave voltammetry of surface-active, electroinactive compounds, Electrochim. Acta 53, 8045-8050 (2008).
A. Molina, M. M. Moreno, C. Serna, M. Lopez-Tenes, J. Gonzalez, N. Abenza, Study of Multicenter Redox Molecules with Square Wave Voltammetry, J. Phys. Chem. C, 111, 12446-12450 (2007).
J. Gonzalez, A. Molina, F. Martinez Ortiz, E. Laborda, Characterization of the Electrocatalytic Response of Monolayer-Modified Electrodes with Square-Wave Voltammetry,J. Phys. Chem. C 116, 11206-11215 (2012).
J. Gonzalez, C. M. Soto, A. Molina, Square Wave Voltammetry and Voltcoulometry applied to electrocatalytic reactions. Oxidation of ferrocyanide at a ferrocene modified gold electrode, J. Electroanal. Chem. 634, 90-97 (2009).
A. Molina, E. Laborda, F. Martinez-Ortiz, D. F. Bradley, D. J. Schiffrin, R. G. Compton, Comparison between double pulse and multipulse differential techniques, J. Electroanal. Chem. 659, 12-24 (2011).
E. Laborda, A. Molina, Q. Li, C. Batchelor-McAuley, R. G. Compton, Square wave voltammetry at disc microelectrodes for characterization of two electron redox processes, Phys. Chem. Chem. Phys., 14, 8319-8327 (2012).
A. Molina, J. Gonzalez, E. Laborda, Y. Wang, R. G. Compton, Analytical theory of the catalytic mechanism in square wave voltammetry at disc electrodes, Phys. Chem. Chem. Phys., 13, 16748-16755 (2011).
A. Molina, J. A. Ortuno, C. Serena, E. Torralba, J. Gonzales,Advances in the Study of Ion Transfer at Liquid Membranes with Two Polarized Interfaces by Square Wave Voltammetry, Electroanalysis, 22, 1634-1642 (2010).
E. Laborda, D. Suwatchara, N.V. Rees, M.C. Henstridge, A. Molina, R.G. Compton, Variable temperature study of electro-reduction of 3-nitrophenolate via cyclic and square wave voltammetry: Molecular insights into electron transfer processes based on the asymmetric Marcus–Hush model, Electrochim. Acta, 110, 772-779 (2013).
M. C. Henstridge, E. Laborda, Y. Wang, D. Suwatchara, N. Rees, A. Molina, F. Martinez-Ortiz, R. G. Compton, Giving physical insight into the Butler–Volmer model of electrode kinetics: Application of asymmetric Marcus–Hush theory to the study of the electroreductions of 2-methyl-2-nitropropane, cyclooctatetraene and europium(III) on mercury microelectrodes, J. Electroanal. Chem., 672, 45-52 (2012).
Y. Wang, E. Laborda, M. C. Henstridge, F. Martinez-Ortiz, A. Molina, R. G. Compton, The use of differential pulse voltammetries to discriminate between the Butler–Volmer and the simple Marcus–Hush models for heterogeneous electron transfer: The electro-reduction of europium (III) in aqueous solution,J. Electroanal. Chem., 668, 7-12 (2012).
M. C. Henstridge, E. Laborda, R. G. Compton, Asymmetric Marcus–Hush model of electron transfer kinetics: Application to the voltammetry of surface-bound redox systems, J. Electroanal. Chem., 674, 90-96 (2012).
V. Mirceski, A. Bobrowski, J. Zarebski, F. Spasovski, Electrocatalysis of the first and second kind: Theoretical and experimental study in conditions of square-wave voltammetry, Electrochim. Acta, 55, 8696-8703 (2010).
V. Mirceski, Z. Tomovski, Modeling of a voltammetric experiment in a limiting diffusion space, J. Solid State Electrochem., 15, 197-204 (2011).
V. Mirceski, D. Guziejewski, W. Ciesielski, Theoretical Treatment of a Cathodic Stripping Mechanism of an Insoluble Salt Coupled with a Chemical Reaction in Conditions of Square Wave Voltammetry. Application to 6-Mercaptopurine-9-D-Riboside in the Presence of Ni(II), Electroanalysis, 23, 1365-1375 (2011).
V. Mirceski, S. B. Hocevar, B. Ogorevc, R. Gulaboski, I. Drangov, Diagnostics of Anodic Stripping Mechanisms under Square-Wave Voltammetry Conditions Using Bismuth Film Substrates, Anal. Chem., 84, 4429-4436 (2012).
R. Gulaboski, Surface ECE mechanism in protein film voltammetry - a theoretical study under conditions of square-wave voltammetry, J. Solid State Electrochem., 13, 1015-1024 (2009).
R. Gulaboski, L. Mihajlov, Catalytic mechanism in successive two-step protein-film voltammetry—Theoretical study in square-wave voltammetry, Biophys. Chem., 155, 1-9 (2011).
R. Gulaboski, M. Lovric, V. Mirceski, I. Bogeski, M. Hoth, Protein-film voltammetry: a theoretical study of the temperature effect using square-wave voltammetry, Biophys. Chem.137, 49-55 (2008).
R. Gulaboski, M. Lovric, V. Mirceski, I. Bogeski, M. Hoth, A new rapid and simple method to determine the kinetics of electrode reactions of biologically relevant compounds from the half-peak width of the square-wave voltammograms, Biophys. Chem. 138, 130-137 (2008).
M. Zhou, S. Gan, L. Zhong, B. Su, L. Niu, Ion transfer voltammetry by a simple two polarized interfaces setup, Anal. Chem. 82, 7857-7860 (2010).
P. Enright, J. Cassidy, A. Betts, Evaluation of a naive model for square wave voltammetry at a microdisk electrode, J. Electroanal. Chem. 619–620, 206-208 (2008).
X. Huang, L. Wang, S. Liao, Method of Evaluation of Electron Transfer Kinetics of a Surface-Confined Redox System by Means of Fourier Transformed Square Wave Voltammetry, Anal. Chem., 80, 5666-5670 (2008).
D. Krulic, N. Fatouros, Peak heights and peak widths at half-height in square wave voltammetry without and with ohmic potential drop for reversible and irreversible systems,J. Electroanal. Chem., 652, 26-31 (2011).
D. Krulic, N. Fatouros, Square wave voltammetry of concentrated analytes in fully supported solutions – Cd(II)/Cd(Hg) couple in NaNO3 medium,J. Electroanal. Chem., 655, 116-119 (2011).
L. Wang, H. Chen, X. Huang, J. Nan, An Experimental Investigation of Quasireversible Maximum of Azobenzene on Mercury Electrode by Fourier Transformed Square-Wave Voltammetry, Electroanalysis, 21, 755-761 (2009).
H. Deng, X. Huang, L. Wang, A. Tang, Estimation of the kinetics of anion transfer across the liquid/liquid interface, by means of Fourier transformed square-wave voltammetry, Electrochem. Commun., 11, 1333-1336 (2009).
V. Mirceski, R. Gulaboski, Surface catalytic mechanism in square-wave voltammetry, Electroanalysis 13,1326-1334 (2001).
V. Mirceski, S. Skrzypek, M. Lovrić, Cathodic Stripping Voltammetry of Uracil. Experimental and Theoretical Study Under Conditions of Square-Wave Voltammetry, Electroanalysis, 21, 87-95 (2009).
V. Mirceski, B. Sebez, M. Jancovska, B. Ogorevc, S.B. Hocevar, Mechanisms and kinetics of electrode processes at bismuth and antimony film and bare glassy carbon surfaces under square-wave anodic stripping voltammetry conditions, Electrochim. Acta, 105, 254-260 (2013).
E. Laborda, A. Molina, F. Martinez-Ortiz, R.G. Compton, Electrode modification using porous layers. Maximising the analytical response by choosing the most suitable voltammetry: Differential Pulse vs Square Wave vs Linear sweep voltammetry, Electrochim. Acta, 73, 3-9 (2012).
G. Quan, J. Yan, Binding constants of lead by humic and fulvic acids studied by anodic stripping square wave voltammetry, Russ.J. Electrochem. 46, 90-94 (2010).
M. Matos, C. Canhoto, M. F. Bento, M. D. Geraldo, Simultaneous evaluation of the dissociated and undissociated acid concentrations by square wave voltammetry using microelectrodes, J. Electroanal. Chem., 647, 144-149 (2010).
R. K. Shervedani, Z. Akrami, Gold–deferrioxamine nanometric interface for selective recognition of Fe(III) using square wave voltammetry and electrochemical impedance spectroscopy methods, Biosens. Bioelectr., 39, 31-36 (2013).
F. E. A. Catunda Jr. M. F. de Araujo, A. M. Granero, F. J. Arevalo, M. G. de Carvalho, M. A. Zon, H. Fernandez, The redox thermodynamics and kinetics of flavonoid rutin adsorbed at glassy carbon electrodes by stripping square wave voltammetry, Electrochim. Acta, 56, 9707-9713 (2011).
J. S. F. Tabares, M. L. Blas, L. E. Sereno, J. J. Silber, N. M. Correa, P. G. Molina, Electrochemistry in large unilamellar vesicles. The distribution of 1-naphthol studied by square wave voltammetry, Electrochim. Acta, 56, 10231-10237 (2011).
Y. Wang, E. Laborda, R. G. Compton, Electrochemical oxidation of nitrite: Kinetic, mechanistic and analytical study by square wave voltammetry, J. Electroanal. Chem. 670, 56-61 (2012).
H. Deng, X. Huang, L. Wang, A Simultaneous Study of Kinetics and Thermodynamics of Anion Transfer across the Liquid/Liquid Interface by Means of Fourier Transformed Large-Amplitude Square-Wave Voltammetry at Three-Phase Electrode, Langmuir, 26, 19209-19216 (2010).
J. A. Ortuno, C. Serna, A. Molina, E. Torralba, Ion Transfer Square Wave Voltammetry of Ionic Liquid Cations with a Solvent Polymeric Membrane Ion Sensor, Electroanalysis, 21, 2297-2302 (2009).
V. Mirceski, R. Gulaboski, I. Bogeski, M. Hoth, Redox Chemistry of Ca-Transporter 2-Palmitoylhydroquinone in an Artificial Thin Organic Film Membrane, J. Phys. Chem. C, 111, 6068-6076 (2007).
F. Quentel, V. Mirceski, M. L’Her, Electrochemical study of the thermodynamics and kinetics of hydrophilic ion transfers across water|n-octanol interface, J. Solid State Electrochem., 12, 31-39 (2008).
F. Quentel, C. Elleouet, V. Mirceski, V. A. Hernández, M. L’Her, M. Lovric, S. Komorski-Lovric, F. Scholz, Studying ion transfers across a room temperature ionic liquid-aqueous electrolyte interface driven by redox reactions of lutetium bis(tetra-tert-butylphthalocyaninato), J. Electroanal. Chem. 611, 192-200 (2007).
F. Quentel, V. Mirceski, M. L’Her, F. Spasovski, M. Gacina, Electrochemical study of hydrophilic ion transfers across cholesterol modified water–nitrobenzene interface by means of thin film electrodes, Electrochem. Commun. 9, 2489-2495 (2007).
F. Quentel, V. Mirceski, C. Elleouet, M. L’Her, Studying the Thermodynamics and Kinetics of Ion Transfers Across Water-2-nitrophenyloctyl Ether Interface by Means of Organic-solution-modified Electrodes, J. Phys. Chem. C, 112, 15553-15561 (2008).
V. Mirceski, F. Quentel, M. L’Her, Chiral recognition based on the kinetics of ion transfers across liquid/liquid interface, Electrochem. Commun. 11, 1262-1264 (2009).
V. Mirceski, T. Dzimbova, B. Sefer, G. Krakutovski, Electrochemistry of coupled electron-ion transfer of a heme-like complex in an artificial organic membrane, Bioelectrochem. 78, 147-154 (2010).
F. Quentel, K. Stankoska, O. Grupce, G. Jovanovski, V. Mirceski, Electrochemistry of saccharinate anion at liquid interfaces, Electrochem. Commun. 2011, 13, 1476-1478 (2011).
B. Sefer, R. Gulaboski, V. Mirceski, Electrochemical deposition of gold at liquid–liquid5 interfaces studied by thin organic film-modified electrodes, J. Solid State Electrochem. 16, 2373-2381 (2012).
F. Quentel, V. Mirceski, M. L’Her, K. Stankoska, Assisted Ion Transfer at Organic Film-Modified Electrodes, J. Phys. Chem. C,. 116, 22885-22892 (2012).
A. Molina, E. Torralba, C. Serna, J. A. Ortuno, Analytical solution for the facilitated ion transfer at the interface between two immiscible electrolyte solutions via successive complexation reactions in any voltammetric technique: Application to square wave voltammetry and cyclic voltammetry, Electrochim. Acta, 106, 244-257 (2013).
V. Mirceski, Charge transfer kinetics in thin-film voltammetry. Theoretical study under conditions of square-wave voltammetry, J. Phys. Chem. B, 108, 13719-13725 (2004).
V. Mirceski, E. Laborda, D. Guziejewski, R. G. Compton, New Approach to Electrode Kinetic Measurements in Square-Wave Voltammetry: Amplitude-Based Quasireversible Maximum, Anal. Chem., 85, 5586-5594 (2013).
V. Mirceski, D. Guziejewski, K. Lisichkov, Electrode kinetic measurements with square-wave voltammetry at a constant scan rate, Electrochim. Acta, 114, 667-673, (2013).
C. J. Helfrick Jr, L. A. Bottomley Cyclic Square Wave Voltammetry of Single and Consecutive Reversible Electron Transfer Reactions, Anal. Chem. 81, 9041-9047 (2009).
V. Mirceski, M. Lovric, Split square-wave voltammograms of surface redox reactions, Electroanalysis, 1997, 9, 1283-1287.
M. C. Henstridge, E. Laborda, N. V. Rees, R. G. Compton, Marcus–Hush–Chidsey theory of electron transfer applied to voltammetry: A review, Electrochim. Acta, 84, 12-20 (2012).
C. Xinsheng, P. Guogang, Cyclic Square Wave Voltammetry: Theory and Experimental, Anal. Lett., 20, 1511-1519 (1987).
Downloads
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.