Visionary figures in the field of electrochemistry who revolutionized voltammetry




electrochemistry, giants in voltammetry, polarography, voltammetry, biosensors


Understanding energetics and electron behavior has been pivotal in elucidating numerous fundamental phenomena, including electricity, corrosion, respiration, energy generation in biological systems, intermolecular interactions within living organisms, organic synthesis, drug development, enzyme functions, and the design of biosensors, among others. As 2024 records the centennial anniversary of the completion of the first polarograph by Nobel laureate Jaroslav Heyrovský (awarded the Nobel Prize in Chemistry in 1959), it presents an opportune moment to pay tribute to several eminent electrochemists who have made significant contributions to the field of voltammetric techniques. Following our recent acknowledgment of the outstanding women who have made substantial contributions to voltammetry in a prior publication, this article aims to briefly highlight the major achievements of several distinguished male figures in the field (Jaroslav Heyrovský, Allen J. Bard, Christian Amatore, Richard Compton, Jean-Michel Savéant, Fraser Armstrong, Fritz Scholz, Joseph Wang, Milivoj Lovrić, Valentin Mirčeski, Alan M. Bond). Given that many of these remarkable personalities have contributed both as authors and referees for the Macedonian Journal of Chemistry and Chemical Engineering, this tribute serves as a fitting acknowledgment of their remarkable accomplishments on the occasion of the journal's 50th anniversary.

Author Biography

Rubin Gulaboski, Faculty of Medical Sciences, Goce Delčev University, Štip

Department of Physical Chemistry and Bioelectrochemistry


(1) Gulaboski, R.; Bogeski. I., Review: Women’s contri-bution in the pulse voltammetric theories and applica-tions: Pulse voltammetry stands on the shoulders of outstanding women electrochemists. J. Electrochem. Soc. 2022, 169, 037519. DOI: 10.1149/1945-7111/ac5cef

(2) Heyrovský, J., Elektrolysa se rtutovou kapkovou ka-thodou. Chemické listy, 1922, 16, 256–264.

(3) Heyrovský, J., The processes at the dropping mercury cathode. I. The deposition of metals. Trans. Faraday Soc. 1924, 19, 692–702.

(4) Heyrovský, J., The processes at the dropping mercury cathode. II. The hydrogen overpotential. Trans. Fara-day Soc. 1924, 19, 785–789.

(5) Heyrovský, J., Researches with the dropping mercury cathode. Part I. General introduction. Rec. Trav. Chim. 1925, 44, 488–495.

(6) Heyrovský, J., Researches with the dropping mercury cathode. Part II. The polarograph. Rec. Trav. Chim. 1925, 44, 496–498.

(7) Heyrovský, J., Researches with the dropping mercury cathode. Part III. A theory of overpotential. Rec. Trav. Chim. 1925, 44, 499–502.

(8) Heyrovský, J., Estimation of oxygen by the polaro-graphic method. Arhiv. Hem. Farm. 1931, 5, 163–173.

(9) Heyrovský, J., On the limiting currents in electrolysis with dropping mercury cathode. Arhiv. Hem. Farm. 1934, 8, 11–17.

(10) Heyrovský, J.; Ilkovic, D., The significance of the de-polarization potentials derived from intensity-potential curves obtained by electrolysis at the dropping mercu-ry electrode. Chemické listy, 1935, 29, 234–237.

(11) Liu, H. Y.; Fan, F. R. F.; Lin. C. W.; Bard A. J., Scan-ning electrochemical and tunneling ultramicroelectrode microscope for high-resolution examination of elec-trode surfaces in solution. J. Am. Chem. Soc. 1986, 108, 3838–3839. DOI: 10.1021/Ja00273A054

(12) Shea, T. V.; Bard, A. J., Digital simulation of homoge-neous chemical reactions coupled to heterogeneous electron transfer and applications at plati-num/mica/platinum ultramicroband electrodes. Anal. Chem. 1987, 59, 2101–2111. DOI: 10.1021/Ac00144A021

(13) Bard, A. J.; Murray, R. W., Electrochemistry. Proc. Natl. Acad. Sci. USA, 2012, 109, 11484–6. PMID 22802653. DOI: 10.1073/pnas.1209943109

(14) Fan F. R. F.; Bard, A. J., Scanning tunneling micro-scopic studies of platinum electrode surfaces. Anal. Chem. 1988, 60, 751–758. DOI: 10.1021/Ac00159A005

(15) Fan, F. R. F.; Kwak, J.; Bard, A. J., Single molecule electrochemistry, J. Am. Chem. Soc. 1996 118: 9669–9675. DOI: 10.1021/Ja9610794

(16) Lee, C.; Kwak, J.; Bard, A. J., Application of scanning electrochemical microscopy to biological sam-ples, Proc. Natl. Acad. Sci. USA, 1990, 87, 1740–1743.

DOI: 10.1073/Pnas.87.5.1740

(17) Pierce, D. T.; Unwin, P. R.; Bard, A. J., Scanning elec-trochemical microscopy. 17. Studies of enzyme-mediator kinetics for membrane- and surface-immobilized glucose oxidase. Anal. Chem. 1992, 64 1795–1804. DOI: 10.1021/Ac00041A011

(18) Electrochemical Methods. Bard, A. J.; Faulkner, L. R., eds.; Wiley: New York, 1980.

(19) Bard, A. J., Between electrode and solution. Nature. 1994, 368, 597–598.

(20) Fan, F. R. F.; Bard, A. J., Electrochemical detection of single molecules. Science. 1995, 267, 871–874.

DOI: 10.1126/Science.267.5199.871

(21) Amatore, C.; Arbault, S.; Bouret, Y.; Cauli, B.; Guille, M.; Rancillac, A.; Rossier, J., Detection of nitric oxide release during neuronal activity with platinized carbon fiber microelectrodes. ChemPhysChem. 2006, 7, 181–187. DOI: 10.1002/cphc.200500202

(22) Y. T. Li, Zhang, S. H.; Wang, L.; Xiao, R. R.; Liu, W.; Zhang, X. W.; Zhou, Z.; Amatore, C.; Huang., W. H., Nanoelectrode for amperometric monitoring of indi-vidual vesicular exocytosis inside single synapses. An-gew. Chem. Int. Ed. 2014, 53, 12456–12460.

DOI: 10.1002/anie.201404744

(23) Y. T. Qi, Jiang, H.; Wu, W. T.; Zhang, F. L.; Tian, S. Y.; Fan, W. T.; Liu, Y. L.; Amatore, C.; Huang, W. H., Homeostasis inside single activated Phagolysosomes: Quantitative and selective measurements of sub-millisecond dynamics of ROS/RNS production with a nanoelectrochemical sensor. J. Am. Chem. Soc. 2022, 144, 9723–9733. DOI: 10.1021/jacs.2c01857

(24) Wang, Y.; Noel, J.-M.; Velmurugan, J.; Nogala, W.; Mirkin, M. V.; Lu, C.; Guille, M.; Collignon, M.; Le-maitre, F.; Amatore, C., Nanoelectrodes for determina-tion of reactive oxygen and nitrogen species inside bi-ological cells. Proc. Natl. Acad. Sci. USA. 2012, 109, 11534–11539. DOI: 10.1073/pnas.1201552109

(25) Amatore, C.; Jutand, A., Mechanistic and kinetic stud-ies of palladium catalytic systems. J. Organomet. Chem. 1999, 576, 254–278.

DOI: 10.1016/S0022-328X(98)01063-8

(26) He, Q.; Zeng, L.; Han, L.; Sartin, M. M.; Peng, J.; Li, J. F.; Oleinick, A.; Svir, I.; Amatore, C.; Tian, Z. Q.; Zhan, D., Electrochemical storage of atomic hydrogen on single layer graphene. J. Am. Chem. Soc. 2021, 143, 18419–18425. DOI: 10.1021/jacs.1c05253

(27) Hillard, E.; Vessières, A.; Thouin, L.; Jaouen, G.; Am-atore, C., Ferrocene-mediated proton-coupled electron transfer in a series of Ferrocifen-type breast cancer drug candidates. Angew. Chem., Int. Ed. 2006, 45, 285–290. DOI: 10.1002/anie.200502925

(28) Amatore, C.; Fosset, B.; Bartelt, J. E.; Deakin, M. R.; Wightman, R. M., Electrochemical kinetics at microe-lectrodes. Part 5. Migrational effects on steady or qua-si-steady state voltammograms. J. Electroanal. Chem. 1988, 256, 255–268.

DOI: 10.1016/0022-0728(88)87002-5

(29) Amatore, C.; Savéant, J.-M.; Tessier, D., Charge trans-fer at partially blocked surfaces. A model for the case of microscopic active and inactive sites. J. Electro-anal. Chem. 1983, 147, 39–51.

DOI: 10.1016/S0022-0728(83)80055-2

(30) Amatore, C.; Savéant, J.-M., Mechanism and kinetic characteristics of the reduction of carbon dioxide in media of low proton availability. J. Am. Chem. Soc. 1981, 103, 5021–5023. DOI: 10.1021/ja00407a008

(31) Understanding Voltammetry, 2nd ed.; Compton, R. G.; Banks, C. E., eds.; World Scientific, UK, 2018.

(32) Yang, M.; Compton, R. G., Voltammetry of adsorbed species: Nonideal interactions leading to phase transi-tions. J. Phys. Chem C, 2020, 124, 18031–18044.

DOI: 10.1021/acs.jpcc.0c03791

(33) Elliott, J. R.; Le, H.; Yang, M.; Compton, R. G., Using simulations to guide the design of amperometric elec-trochemical sensors based on mediated electron trans-fer. ChemElectroChem. 2020, 7, 2797–2815.

DOI: 10.1002/celc.202000674

(34) Miao, R.; Chen, L.; Shao, L.; Zhang, B.; Compton, R., Electron transfer to decorated graphene oxide parti-cles. Angew. Chem. Int. Ed. 2019, 58, 12549–12552.

DOI: 10.1002/anie.201907393

(35) Laborda, E.; Molina, A,; Fernandes Espin, V.; Mar-tinez-Ortiz, F.; Garcia de la Torre, J.; Compton, R., Single fusion events at polarized liquid-liquid inter-face. Angew. Chem. Int. Ed. 2016, 56, 782–785.

DOI: 10.1002/anie.201610185

(36) Sepunaru, L.; Sokolov, S. V.; Holter, J.; Young, N. P.; Compton, R., Electrochemical red blood cell counting: One at a time. Angew. Chem. Int. Ed. 2016, 55, 9768–9771. DOI: 10.1002/anie.201605310

(37) Ly, L.; Batchelor-McAuley, C.; Tschulik, K.; Kaetelhoen, E.; Compton, R., A critical evaluation of the interpretation of electrocatalytic nanoimpacts. J. Phys. Chem C, 2014, 118, 17756–17763.

DOI: 10.1021/jp504968j

(38) Nissim, R.; Compton, R., Noneznymatic electrochemi-cal superoxide sensor. ChemElectroChem. 2014, 1, 763–771. DOI: 10.1002/celc.201300209

(39) Cheng, W.; Zhou, X-F.; Compton, R. G., Electrochem-ical sizing of organic nanoparticles. Angew. Chem. Int. Ed. 2013, 52, 12980–12982.

(40) Laborda, E.; Henstridge, M. C.; Batchelor-McAuley, C.; Compton, R. G., Asymmetric Marcus-Hush theory for voltammetry. Chem. Soc. Rev. 2013, 42, 4894–4905. DOI: 10.1039/c3cs35487c

(41) Savéant, J.-M.; Costentin, C., Elements of Molecular and Biomolecular Electrochemistry, 2nd ed.; John Wiley & Sons, Inc., Hoboken, NJ, 2019.

(42) Mastragostino, M.; Nadjo, L.; Savéant, J.-M., Dispro-portionation and ECE mechanisms- I. Theoretical analysis. Relationships for linear sweep voltammetry. Electrochim. Acta 1968, 13, 721−749.

(43) Savéant, J.-M., Molecular catalysis of electrochemical reactions. Chem. Rev. 2008, 108, 2348−2378.

(44) Savéant, J.-M.; Vianello, E., Potential-sweep voltam-metry. General theory of chemical polarization. Elec-trochim. Acta 1967, 12, 629−646.

(45) Andrieux, C. P.; Blocman, C.; Dumas-Bouchiat; M’Halla, F.; Savéant, J.-M., Homogeneous redox atalycsis of electrochemical reactions. Part V. Cyclic Voltammetry. J. Electroanal. Chem. Interf. Electro-chem. 1980, 113, 19−40.

DOI: 0.1016/S0022-0728(80)80508-0

(46) Savéant, J.-M., Catalysis of chemical reactions by electrodes. Acc. Chem. Res. 1980, 13, 323−329.

(47) Savéant, J.-M., A simple model for the kinetics of dis-sociative electron transfer in polar Solvents. Applica-tion to the homogeneous and heterogeneous reduction of alkyl halides. J. Am. Chem. Soc. 1987, 109, 6788−6795.

(48) Bourdillon, C.; Demaille, C.; Moiroux, J.; Savéant, J.-M., Catalysis and mass transport in spatially ordered enzyme assemblies on electrodes. J. Am. Chem. Soc. 1995, 117, 11499−11506.


(49) Savéant, J.-M., Proton relays in molecular catalysis of electrochemical reactions: Origin and limitations of the boosting effect. Angew. Chem., Int. Ed. 2019, 58, 2125−2128. DOI: 10.1002/anie.201812375

(50) Costentin, C.; Savéant, J.-M., Cyclic voltammetry analysis of electrocatalytic films. J. Phys. Chem. C, 2015, 119, 12174−12182. DOI: 10.1021/acs.jpcc.5b02376

(51) Morello, G.; Megarity, C.; Armstrong, F. A., The pow-er of electrified nanoconfinement for energising, con-trolling and observing long enzyme cascades. Nature Commun. 2021, 12, 340.

DOI: 10.1038/s41467-020-20403-w

(52) Evans, R.; Siritanaratakul, B.; Megarity, C.; Pamdey, K.; Esterle, T. F.; Badiani, S.; Armstrong, F., The value of enzymes in solar fuel research-efficient electro-cataysts through evolution. Chem. Soc. Rev. 2018, 48, 2039–2052. DOI: 10.1039/c8cs00546j

(53) Megarity, C.; Esselborn, J.; Hexterm S. V.; Wittkamp, F.; Apfel, U-P.; Happe, T.; Armstrong, F., Electro-chemical investigations of the mechanism of assembly of the active-site H-cluster of [Fe-Fe] hydrogenases. J. Am. Chem. Soc. 2016, 138, 15227–15233.

DOI: 10.1021/jacs.6b09366

(54) Amstrong, F. A.; Evans, R.; Hexterm S. V.; Murphy, B. J.; Roessler, M. M.; Wulff, P., Guiding principles of hydrogenases catalysis instigated and clarified by pro-tein film electrochemistry. Acc. Chem. Res. 2016, 49, 884–892. DOI: 10.1021/acs.accounts.6b00027

(55) Vincent, K. A.; Blanford, C. F.; Belsey, N. A.; Weiner, J. H.; Armstrong, F. A., Enzyme Catalysis on conduct-ing graphite particles. Nat. Chem. Biol. 2007, 3, 761–762. DOI: 10.1038/nchembio.2007.47

(56) Wijma, H. J.; Jeukem L. J. C.; Verbeet, M. P.; Arm-strong, F. A.; Canters, G. W., Protein film voltammetry of copper-containing nitrite reductase reveals reversi-ble inactivation. J. Am. Chem. Soc. 2007, 129, 8557–8565. DOI: 10.1021/ja071274q

(57) Vincent, K. A.; Cracknell, J. A.; Lenz, O.; Zebger, I.; Friedrich, B.; Armstrong, F., Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen level. Proc. Natl. Acad. Sci. USA, 2005, 102, 16951–16954. DOI: 10.1073/pnas.0504499102

(58) Lamle, S. E.; Albracht, S. P. J.; Armstrong, F. A., The mechanism of activation of a [Ni-Fe]-hydrogenase by electrons, hydrogen, and carbon monoxide. J. Am. Chem. Soc. 2005, 127, 6595–6604.

DOI: 10.1021/ja0424934

(59) Jeukem L. J. C.; Jones, A. K.; Chapman, S. K.; Cec-chini, G.; Armstrong, F. A., Electron-transfer mecha-nisms through biological redox chains in multicenter enzymes. J. Am. Chem. Soc. 2002, 124, 5702–5713.

DOI: 10.1021/ja012638w

(60) Armstrong, F. A., Electron transfer and coupled pro-cesses in protein film voltammetry. Biochem. Soc. Trans. 1999, 27, 206–210. DOI: 10.1042/bst0270206

(61) Scholz, F.; Lange, B., Abrasive stripping voltammetry-an electrochemical solid state spectroscopy of wide applicability. TrAC-Trend Anal. Chem. 1992, 11, 359–367.

(62) Scholz, F., Electrochemical Methods: Guide to Exper-iments and Applications. 2nd ed.; Springer, Berlin, Germany, 2010.

(63) Scholz, F. Schroder, U.; Gulaboski, R.; Domenech-Carbo, A., Electrochemistry of Immobilized Particles and Droplets: Experiments with Three-phase Elec-trodes. 2nd ed.; Springer: Berlin, Germany, 2015.

(64) Electrochemical Dictionary. 2nd ed.; Bard, A. J.; Inzelt, G.; Scholz, F., eds.; Springer, Berlin, Germany, 2014.

(65) Scholz, F.; Mayer, B., Electrochemical solid state analysis: state of the art. Chem. Soc. Rev. 1994, 23, 341–347.

(66) Grygar, T.; Marken, F.; Schroder, U.; Scholz, F., Elec-trochemical analysis of solids. A review. Coll. Czech Chem. Commun. 2002, 67, 163–208.

(67) Scholz, F.; Komorsky-Lovrić, Š.; Lovrić, M., A new access to Gibbs energies of transfer of ions across liq-uid/liquid interfaces and a new method to study elec-trochemical processes at well-defined three-phase junction. Electrochem. Commun. 2000, 2, 112–118.

(68) Gulaboski, R.; Mirceski, V.; Scholz, F., An electro-chemical method for the determination of the standard Gibbs energy of anion transfer between water and n-octanol. Electrochem. Commun. 2002, 4, 277–283.

(69) Rosenbaum, M.; Zhao, F.; Schroder, U.; Scholz, F., In-terfacing electrocatalysis and biocatalysis with tung-sten carbide: a high performance, nobel-metal free mi-crobial fuel cell. Angew. Chem. Int. Ed. 2006, 45, 6658–6661.

(70) Scholz, F. Voltammetric techniques of analysis: the essentials. ChemTexts 2015, 1, 17.

(71) Wang, J., Stripping Analysis: Principles, Instrumenta-tion and Applications, VCH Publishers, Deerfield Beach, 1985.

(72) Wang, J. In: Electroanalytical Chemistry (Bard, A. J.; ed.), Vol 16. Marcel Dekker, New York, 1989.

(73) Blaedel, W. J.; Wang, J., Mixed immobilized enzyme-porous electrode reactor. Anal. Chem. 1980, 52, 1426–1429.

(74) Wang, J., Recent advances in stripping analysis. Fresenius J. Anal. Chem. 1990, 337, 508–511.

(75) Wang, J., Amperometric biosensors for clinical and therapeutic drug monitoring: a review. J. Pharm. Bio-med. Anal. 1999, 19, 47–53.

(76) Wang, J., Carbon-nanotube based electrochemical bio-sensors: A review. Electroanalysis, 2005, 17, 7–14.

(77) Wang, J., Nanomaterials-based electrochemical bio-sensors. Analyst, 2005, 130, 421–426.

(78) Kagan, D.; Balasubramanian, S.; Wang, J., Chemically triggered swarming of gold microparticles. Angew. Chem. Int. Ed. 2010, 50, 503–506.

(79) Li, J.; De Avila, B. E.-F.; Gao, W.; Zhang, L.; Wang, J., Micro/nanorobots for biomedicine: delivery, sur-gery, sensing and detoxification. Sci. Robotics 2017, 2.

DOI: 10.1126/scirobotics.aam6431

(80) Hartel, M. C.; Dongwook, L.; Weiss, P. S.; Wang, J.; Kim, J., Resettable sweat-powered wearable electronic biosensors. Biosens. Bioelect. 2022, 215, 114565.

(81) Mirceski, V.; Komorsky-Lovrić, Š.; Lovrić, M. Square-wave Voltammetry, Theory and Application, Scholz, F. ed.; Springer, Berlin, Germany, 2007.

(82) Lovrić, M.; Osteryoung, J., Theory of differential normal pulse voltammetry. Electrochim. Acta, 1982, 27, 963–968.

(83) Lovrić, M.; O'Dea, J. J.; J. Osteryoung, J., Faradaic re-sponse in derivative and differential normal pulse voltammetry. Anal. Chem. 1983, 55, 704–708.

(84) Lovrić, M. Komorsky-Lovrić, Š. Bond, A., Theory of square-wave stripping voltammetry and chronoam-perometry of immobilized reactants. J. Electroanal. Chem. Interf. Electrochem. 1991, 319, 1–18.

(85) Garay, F.; Lovrić, M., Square-wave voltammetry of quasi-reversible electrode processes with coupled ho-mogeneous chemical reactions. J. Electroanal. Chem. 2002, 518, 91–102.

(86) Lovrić, M.; Scholz, F., A model for the propagation of a redox reaction through microcrystals. J. Solid State Electrochem. 1997, 1, 108–113.

(87) Lovrić, M.; Scholz, F., Modeling cyclic voltammo-grams of simultaneous electron and ion transfer reac-tions at conic film three-phase electrode. J. Electro-anal. Chem. 2003, 540, 89–96.

(88) Lovrić, M.; Jadreško, D., Theory of square-wave volt-ammetry of quasireversible electrode reactions using an inverse scan direction. Electrochim. Acta 2010, 55, 948–951.

(89) Lovrić, M.; Jadreško, D.; Komorsky-Lovrić, Š., Theo-ry of square-wave voltammetry of electrode reaction followed by the dimerization of the product. Electro-chim. Acta 2013, 90, 226–231.

(90) Lovrić, M.; Pižeta, I.; Komorsky-Lovrić, Š., A square-wave voltammetry in a cathodic stripping mode. Elec-troanalysis, 1992, 4, 327-337.

(91) Mirceski, F.; Gulaboski, R.; Lovrić, M.; Bogeski, I.; Kappl, R.; Hoth, M., Square-wave voltammetry: a re-view on recent progress. Electroanalysis, 2013, 25, 2411–2422.

(92) Gulaboski, R.; Mirceski, V., Application of voltamme-try in biomedicine-recent achievements in enzymatic voltammetry. Maced. J. Chem. Chem. Eng. 2020, 39, 153–166.

(93) Mirceski, V.; Lovrić, M., Split square-wave voltam-mograms of surface redox reactions. Electroanalysis, 1997, 9, 1283–1287.

(94) Bogeski, I.; Gulaboski, R.; Kappl, R.; Mirceski, V.; Stefova, M.; Petreska, J.; Hoth, M., Calcium binding and transport by Coenzyme Q. J. Am. Chem. Soc. 2011, 133, 9293–9303.

(95) Mirceski, V.; Guziejewski, D.; Stojanov, L.; Gula-boski, R., Differential square-wave voltammetry. Anal. Chem. 2019, 91, 14904–14910.

(96) Jadreško, D.; Guziejewski, D.; Mirceski, V., Electro-chemical faradaic spectroscopy. ChemElectroChem. 2018, 5, 187–194.

(97) Mirceski, V.; Lovrić, M.; Compton, R. G.; Ullah, N., Revisiting the Butler-Volmer electrode kinetics: Sepa-rating the anodic and cathodic current components of a quasi-reversible electrode reactions in staircase volt-ammetry. J. Electroanal. Chem. 2024, 118111.

(98) Mirceski, V., Charge transfer kinetics in thin-film volt-ammetry. Theoretical study under conditions of square-wave voltammetry. J. Phys. Chem. B, 2005, 108, 13719–13725.

(99) Quentel, F.; Mirceski, V.; L’Her, M., Lutetium bis(tetra-tert-butylphthalocyaninato): A superior redox probe to study the transfer of anions and cations across the water/nitrobenzene interface by means of square-wave voltammetry at the three-phase electrode. J. Phys. Chem. B, 2005, 109, 1262–1267.

(100) Kokoskarova, P.; Stojanov, L.; Najkov, K.; Ristovska, N.; Ruskovska, T.; Skrzypek, S.; Mirceski, V., Square-wave voltammetry of human blood serum Sci. Rep. 2023, 13, 8485.

(101) Bond, A. M., Modern Polarographic Methods in Ana-lytical Chemistry, CRC Press, 2020.

(102) Bond, A. M., Past, present and future contributions of microelectrodes to analytical studies employing volt-ammetric detection. A review. Analyst, 1994, 119, 1R-21R.

(103) Bond, A. M.; Oldham, K. B.; Zoski, C. G., Steady-state voltammetry. Anal. Chim. Acta 1989, 216, 177–230.

(104) Zoski, C. G.; Bond, A. M.; Allinson, E. T.; Oldham, K. B., How long does it take a microelectrode to reach a voltammetric steady state? Anal. Chem. 1995, 67, 1691–1695.

(105) Zhao, C.; Burrell, G.; Torriero, A. A. J.; Separovic, F.; Dunlop, N. F.; MacFarlane, D. R., Electrochemistry of room temperature protic ionic liquids. J. Phys. Chem. B 2008, 112, 6923–6936.

(106) Bond, A. M.; Duffy, N. W.; Guo, S. X.; Zhang, J.; El-ton, D., Changing the look of voltammetry. Anal. Chem. 2005, 77, 186A–195A.

(107) Ding, L.; Bond, A. M.; Zhai, J.; Zhang, J., Utilization of nanoparticle labels for signal amplification in ultra-sensitive electrochemical affinity biosensors: a review. Anal. Chim. Acta 2013, 797, 1–12.

(108) Guo, S.; Zhang, J.; Elton, D. M.; Bond, A. M., Fourier transform large amplitude alternating current cyclic voltammetry of surface-bound azurin. Anal. Chem. 2004, 76, 166–177.

(109) Bond, A. M.; O’Halloran, R. J.; Ruzic, I.; Smith, D. E., Fundamental and second harmonic alternating current cyclic voltammetry theory and experimental results for simple electrode reactions involving solution-soluble redox couples. Anal. Chem. 1976, 48, 872–883.

(110) Gundry, L.; Kennedy, G.; Bond, A. M.; Zhang, J., Es-tablishing zone regions in cyclic voltammetry using unsupervised machine learning. J. Electroanal. Chem. 2023, 117551.



2024-04-18 — Updated on 2024-05-19


How to Cite

Gulaboski, R. (2024). Visionary figures in the field of electrochemistry who revolutionized voltammetry. Macedonian Journal of Chemistry and Chemical Engineering, 43(1), 29–48. (Original work published April 18, 2024)




Most read articles by the same author(s)