Application of voltammetry in biomedicine - Recent achievements in enzymatic voltammetry

Rubin Gulaboski, Valentin Mirceski


Protein-film voltammetry (PFV) is considered the simplest methodology to study the electrochemistry of lipophilic redox enzymes in an aqueous environment. By anchoring particular redox enzymes on the working electrode surface, it is possible to get an insight into the mechanism of enzyme action. The PFV methodology enables access to the relevant thermodynamic and kinetic parameters of the enzyme-electrode reaction and enzyme-substrate interactions, which is important to better understand many metabolic pathways in living systems and to delineate the physiological role of enzymes. PFV additionally provides important information which is useful for designing specific biosensors, simple medical devices and bio-fuel cells. In the current review, we focus on some recent achievements of PFV, while presenting some novel protocols that contribute to a better communication between redox enzymes and the working electrode. Insights to several new theoretical models that provide a simple strategy for studying electrode reactions of immobilized enzymes and that enable both kinetic and thermodynamic characterization of enzyme-substrate interactions are also provided. In addition, we give a short overview to several novel voltammetric techniques, derived from the perspective of square-wave voltammetry, which seem to be promising tools for application in PFV.


protein-film voltammetry; surface electrode mechanisms; enzyme-substrate interactions; modified electrodes; kinetics of electron transfer

Full Text:



G. Dryhurst, Electrochemistry of Biological Molecules, Academic Press, New York, 2012.

S. Cosnier, Electrochemical Biosensors, Jenny Stan-ford Publishing, Singapore, 2015.

R. C. Alkire, D. M. Kolb, K. Lipkowski, Bioelectro-chemistry: Fundamentals, Applications and Recent Developments, New Jersey, Wiley-VCH, 2011.

A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications. 2nd ed., Wiley, New York, 2001.

J-M. Savéant, Jean-Michel, Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry, John Wiley & Sons, 2006.

R. G. Compton, C. E. Banks, Understanding Voltam-metry, 3rd edition, World Scientific Publishing Europe Ltd, UK, 2018.

A. D. Rodriguez, Drug-Drug Interactions, CRC Press, London, UK, 2019.

R. Das, M. Das, S. R. Chinnadayyala, I. M. Singha, P. Goswami, Recent advances on developing 3rd genera-tion enzyme electrode for biosensor applications, Bio-sens. Bioelectron., 79, 386–397 (2016).

DOI: 10.1016/j.bios.2015.12.055

R. Islam, H. T. L. Luu, S. Kuss, Review–Electrochemical approaches and advances towards de-tection of drug resistance, J. Electrochem. Soc. 167, 045501 (2020).

R. Gulaboski, P. Kokoskarova, S. Petkovska, Analysis of drug-drug interactions with cyclic voltammetry-an overview of relevant theoretical models and recent experimental achievments, Anal. Bioanal. Electro-chem., 12, 345–364 (2020).

I. Taurino, G. Sanzò, R. Antiochia, C. Tortolini, F. Mazzei, G. Favero, G. De Micheli, S. Carrara, Recent advances in third generation biosensors based on Au and Pt nanostructured electrodes, Trends Anal. Chem., 79, 151–159 (2016).

P. Yanez-Sedeno, S. Campuzano, J. M. Pingarron, Car¬bon nanostructures for tagging in electrochemical biosensing: A review, J. Carbon Res., 3 (2017).


T. A. Silva, F. C. Moraes, B. C. Janegitz, O. Fatibello-Filho, Electrochemical biosensors based on nano-structured carbon black: A review, J. Nanomater., 4571614 (2017). DOI:

P. Bollella, C. Schulz, G. Favero, F. Mazzei, R. Lud-wig, L. Gorton, R. Antiochia, Green synthesis and charac¬terization of gold and silver nanoparticles and their application for development of a third generation lactose biosensor, Electroanal., 29, 77–86 (2017).

C. Leger, P. Bertrand, Direct electrochemistry of redox enzymes as a tool for mechanistic studies, Chem. Rev., 108, 2379–2438 (2007). DOI:

L. Jeuken. Biophotoelectrochemistry: from Bioelectro-chemistry to Biophotovoltaics, Springer International, Switzerland, 2016.

F. A. Armstrong, H. A. Heering, J. Hirst, Reactions of complex metalloproteins studied by protein-film volt-am¬metry, Chem. Soc. Rev., 26, 169–179 (1997).

DOI: 10.1039/CS9972600169

F. A. Armstrong, Insights from protein film voltamme-try into mechanisms of complex biological electron-transfer reactions, J. Chem. Soc. Dalton. Trans., 5, 661–671 (2002).

P. Bollella, E. Katz, Enzyme-based biosensors: Tack-ling electron transfer issues, Sensors, 20, 3517 (2020).

DOI: 10.3390/s20123517

R. Gulaboski, V. Mirceski, I. Bogeski, M. Hoth, Pro-tein film voltammetry–electrochemical enzymatic spectroscopy. A review on recent progress, J. Solid State Electrochem., 16, 2315–2328 (2012).

P. Bartlett, Bioelectrochemistry: Fundamentals, Exper-i¬mental Techniques and Applications, J Wiley & Sons, New Jersey, 2008.

R. Gulaboski, P. Kokoskarova, S. Mitrev, Theoretical aspects of several successive two-step redox mecha-nisms in protein-film cyclic staircase voltammetry, Electrochim. Acta, 69, 86–96 (2012).

DOI: 10.1016/j.electacta.2012.02.086

R. Gulaboski, P. Kokoskarova, S. Petkovska, Time-independent methodology to access Michaelis-Menten constant by exploring electrochemical-catalytic mech-a¬nism in protein-film cyclic staircase voltammetry, Croat. Chem. Acta, 91, 377–382 (2018).

DOI: 10.5562/cca3383

P. Kokoskarova, M. Janeva, V. Maksimova, R. Gula-boski, Protein-film Voltammetry of two-step electrode enzymatic reactions coupled with an irreversible chemical reaction of a final product-a theoretical study in square-wave voltammetry, Electroanal., 31, 1454–1464 (2019). DOI: 10.1002/elan.20190022

R. Gulaboski, M. Janeva, V. Maksimova, New aspects of protein-film voltammetry of redox enzymes cou-pled to follow-up reversible chemical reaction in square-wave voltammetry, Electroanal., 31, 946–956 (2019).

M. Janeva, P. Kokoskarova, V. Maksimova, R. Gula-boski, Square-wave voltammetry of two-step surface redox mechanisms coupled with chemical reactions – a theoretical overview, Electroanal., 31, 2488–2506 (2019). DOI: doi/10.1002/elan.201900416

R. Gulaboski, V. Mirceski, M. Lovric, Square-wave protein-film voltammetry: new insights in the enzy-matic electrode processes coupled with chemical reac-tions, J. Solid State Electrochem., 23, 2493–2506 (2019).

M. Janeva, P. Kokoskarova, R. Gulaboski, Multistep surface electrode mechanism coupled with preceding chemical reaction-theoretical analysis in square-wave voltammetry, Anal. Bioanal. Electrochem., 12, 766–779 (2020).

R. Gulaboski, V. Mirceski, Simple voltammetric ap-proach for characterisation of two-step surface elec-trode mechanism in protein-film voltammetry, J. Solid State Electrochem., 24 (2020).

R. Gulaboski, Theoretical contribution towards under-standing specific behaviour of “simple” protein-film reactions in square-wave voltammetry. Electroanal., 31, 545–553 (2019).

V. Mirceski, D. Guziejewski, L Stojanov, R. Gula-boski, Differential square-wave voltammetry, Anal. Chem., 91, 4904–14910 (2019).

P. Kokoskarova, R. Gulaboski, Theoretical aspects of a surface electrode reaction coupled with preceding and regenerative chemical steps: Square-wave volt-ammetry of a surface CEC’ mechanism, Electroanal., 32, 333–344 (2020).

R. Gulaboski, V. Mirceski, New aspects of the electro-chemical-catalytic (EC’) mechanism in square-wave voltammetry, Electrochim. Acta, 167, 219–225 (2015).

V. Mirceski, R. Gulaboski, Recent achievements in square-wave voltammetry (a review), Maced. J. Chem. Chem. Eng., 33, 1–12 (2014).

V. Mirceski, D. Guzijewski, R. Gulaboski, Electrode kinetics from a single square-wave voltammograms, Maced. J. Chem. Chem. Eng. 34, 181–188 (2015).

A. Molina, J. Gonzales, Pulse voltammetry in physical electrochemistry and electroanalysis. In: Monographs in Electrochemistry (F. Scholz, ed.), Springer, Berlin Heidelberg, 2016.

R. Gulaboski, L. Mihajlov, Catalytic mechanism in successive two-step protein-film voltammetry – theo-retical study in square-wave voltammetry, Biophys. Chem., 155, 1–9 (2011).

S. Petkovska, R. Gulaboski, Theoretical analysis of a surface catalytic mechanism associated with reversible chemical reaction under conditions of cyclic staircase voltammetry, Electroanal., 32, 992–1004 (2020).

M. A. Mann, L. A. Bottomley, Cyclic square-wave voltammetry of surface-confined quasireversible elec-tron transfer reactions, Langmuir, 31, 9511–9520 (2015).

C. B. McAuley, E. Katelhon, E. O. Barnes, R. G. Compton, E. Laborda, A. Molina, Recent advances in voltammetry, Chem. Open, 4, 224–260 (2015).

DOI: 10.1002/open.201500042

W. Putzbach, N. J. Ronkainen, Immobilization techni-ques in the fabrication of nanomaterial-based electro-chemical biosensors: A review, Sensors, 13, 4811–4840 (2013).

P. Bollella, Porous gold: A new frontier for enzyme-based electrodes. Nanomaterials, 10, 722 (2020).

P. Bollella, F. Mazzei, G. Favero, G. Fusco, R. Lud-wig, L. Gorton, R. Antiochia, Improved DET commu-nication between cellobiose dehydrogenase and a gold electrode modified with a rigid self-assembled mono-layer and green metal nanoparticles: The role of an or-dered nanostructuration, Biosens. Bioelectron., 88, 196–203 (2017). DOI: 10.1016/j.bios.2016.08.027

P. Avanagh, D. Leech, Mediated electron transfer in glucose oxidising enzyme electrodes for application to biofuel cells: recent progress and perspectives, Phys. Chem. Chem. Phys., 15, 4859–4869 (2013).

DOI: 10.1039/c3cp44617d

C. Léger, S. J. Elliott, K. R. Hoke, L. J. C. Jeuken, A. K. Jones and F. A. Armstrong, Enzyme electrokinetics: Using protein film voltammetry to investigate redox enzymes and their mechanisms, Biochemistry, 42, 8653–8662 (2003).

G. Li, P. Miao, Electrochemical Analysis of Proteins and Cells, Springer Science and Business Media, 2012.

F. A. Al-Lolage, M. Meneghello, S. Ma, R. Ludwig, P. N. Bartlett, A flexible method for the stable, covalent immobilization of enzymes at electrode surfaces, ChemElectroChem, 4, 1528–1534 (2017).

C. Schulz, R. Ludwig, P. O. Micheelsen, M. Silow, M. D. Toscano, L. Gorton, Enhancement of enzymatic ac-tivity and catalytic current of cellobiose dehydro-genase by calcium ions, Electrochem. Commun., 17, 71–74 (2012).

D. Kracher, K. Zahma, C. Schulz, C. Sygmund, L. Gorton, R. Ludwig, Inter-domain electron transfer in cellobiose dehydrogenase: Modulation by pH and di-valent cations, FEBS J., 282, 3136–3148 (2015).

DOI: 10.1111/febs.13310

P. Bollella, Y. Hibino, K. Kano, L. Gorton, R. Anti-ochia, The influence of pH and divalent/monovalent cations on the internal electron transfer (IET), enzy-matic activity, and structure of fructose dehydrogen-ase, Anal. Bioanal. Chem., 410, 3253–3264 (2018).

J. R. Winkler, H. B. Gray, Long-range electron tun-neling, J. Am. Chem. Soc., 136, 2930–2939 (2014).

G. Li, P. Yao, R. Gong, J. Li, P. Liu, R. Lonsdale, Q. Wu, J. Lin, D. Zhu, M. T. Reetz, Simultaneous engi-neering of an enzyme’s entrance tunnel and active site: the case of monoamine oxidase MAO-N, Chem. Sci., 8, 4093–4099 (2017). DOI: 10.1039/c6sc05381e

A. Ruff, Redox polymers in bioelectrochemistry: Common playgrounds and novel concepts. Curr. Opin. Electrochem., 5, 66–73 (2017).

A. R. Pereira, J. C. P. de Souza, R. M. Iost, F. C. P. F. Sales, F. N. Crespilho, Application of carbon fibers to flexible enzyme electrodes, J. Electroanal. Chem., 780, 396–406 (2016).

J. C. P. de Souza, R. M. Iost, F. N. Crespilho, Nitrated carbon nanoblisters for high-performance glucose de-hydrogenase bioanodes, Biosens Bioelectron, 77, 860–865 (2016). DOI: 10.1016/j.bios.2015.08.069

R. M. Kakhki, A review to recent developments in modification of carbon fiber electrodes, Arab. J. Chem., 12, 1783–1794 (2019).

R. Gulaboski, V. Mirceski, R. Kappl, M. Hoth, M. Bozem, Quantification of hydrogen peroxide by elec-trochemical methods and electron spin resonance spectroscopy, J. Electrochem. Soc., 166, G82–G101 (2019). DOI: 10.1149/2.1061908jes

P. Bollella, L. Gorton, R. Ludwig, R. Antiochia, A third generation glucose biosensor, based on cellobi-ose dehydrogenase immobilized on a glassy carbon elec¬trode decorated with electrodeposited gold nano-par¬ticles: Characterization and application in human saliva, Sensors, 17, 1912 (2017). DOI: 10.3390/s17081912

S. Prabhulkar, H. Tian, X. Wang, J-J. Zhu, C-Z. Li, Engineered proteins: redox properties and their appli-cation, Antioxid. Redox Signal., 17, 1796–1822 (2012).

DOI: 10.1089/ars.2011.4001

S. Ma, C. V. Laurent, M. Meneghello, J. Tuoriniemi, C. Oostenbrink, L. Gorton, P. N. Bartlett, R. Ludwig, Direct electron-transfer anisotropy of a site-specifically immobilized cellobiose dehydrogenase, ACS Catal. 9, 7607–7615 (2019).

S. Bozorgzadeh, H. Hamidi R. Ortiz, R. Ludwig, L. Gorton, Direct electron transfer of Phanerochaete chrysosporium cellobiose dehydrogenase at platinum and palladium nanoparticles decorated carbon nano-tubes modified electrodes, Phys. Chem. Chem. Phys., 17, 24157–24165 (2015). DOI: 10.1039/C5CP03812J.

M. Tavahodi, R. Ortiz, C. Schulz, A. Ekhtiari, R. Lud-wig, B. Haghighi, L. Gorton, Direct electron transfer of cellobiose dehydrogenase on positively charged poly-ethyleneimine gold nanoparticles, Chem. Plus Chem., 82, 546–552 (2017).

DOI: 10.1002/cplu.201600453

M. Meneghello, F. A. Al-Lolage, S. Ma, R. Ludwig, P. N. Bartlett, Studying direct electron transfer by site-directed immobilization of cellobiose dehydrogenase. ChemElectroChem, 6, 700–713 (2019).

F. A. Al-Lolage, P. N. Bartlett, S. Gounel, P. Staigre, N. Mano, Site-directed immobilization of bilirubin ox-idase for electrocatalytic oxygen reduction, ACS Catal. 9, 2068–2078 (2019).

A. de Poulpiquet, C. H. Kjaergaard, J. Rouhana, I. Mazurenko, P. Infossi, S. Gounel, R. Gadiou, M. T. Giudici-Orticoni, E. I. Solomon, N. Mano, Mechanism of chloride inhibition of bilirubin oxidases and its de-pendence on potential and pH, ACS Catal., 7, 3916–3923 (2017).

N. Suzuki, J. Lee, N. Loew, Y. Takahashi-Inose, J. Okuda-Shimazaki, K. Kojima, K. Mori, W. Tsugawa, K. Sode, Engineered glucose oxidase capable of quasi-direct electron transfer after a quick-and-easy modifi-cation with a mediator, Int. J. Mol. Sci., 21, 1137 (2020). DOI: 10.3390/ijms21031137

P. Bollella, S. Sharma, A. E. G. Cass, R. Antiochia, Minimally-invasive microneedle-based biosensor array for simultaneous lactate and glucose monitoring in ar-tificial interstitial fluid, Electroanal., 31, 374–382 (2019). DOI:

V. Flexer, N. Mano, Wired pyrroloquinoline quinone soluble glucose dehydrogenase enzyme electrodes op-erating at unprecedented low redox potential, Anal. Chem., 86, 2465–2473 (2014). DOI: 10.1021/ac403334w.

I. Algov, J. Grushka R. Zarivach L. Alfonta, Highly efficient flavin-adenine dinucleotide glucose dehydro-genase fused to a minimal cytochrome c domain, J. Am. Chem. Soc., 139, 17217–17220 (2017).

DOI: 10.1021/jacs.7b07011

J. H. Luong, J. D. Glennon, A. Gedanken, S. K. Vash-ist, Achievement and assessment of direct electron transfer of glucose oxidase in electrochemical biosens-ing using carbon nanotubes, graphene, and their nano-composites. Microchim. Acta, 184, 369–388 (2017).

Y. F. Bai, T. B. Xu, J. H. Luong, H. F. Cui, Direct electron transfer of glucose oxidase-boron doped dia-mond interface: A new solution for a classical prob-lem, Anal. Chem., 86, 4910–4918 (2014).

A. Killyeni, M. E. Yakovleva, D. MacAodha, P. O. Conghaile, C. Gonaus, R. Ortiz, D. Leech, I. C. Popescu, C. K. Peterbauer, L. Gorton, Effect of degly-cosylation on the mediated electrocatalytic activity of recombinantly expressed Agaricus meleagris pyranose dehydrogenase wired by osmium redox polymer, Elec-trochim. Acta, 126, 61–67 (2014).

K. Reddaiah, T. M. Reddy, Electrochemical biosensor based on silica sol-gel entrapment of horseradish pe-roxidase onto the carbon paste electrode toward the determination of 2-aminophenol in non-aqueous sol-vents: A voltammetric study, J. Mol Liq., 196, 77–85 (2014).

M. V. A. Martins, A. R. Pereira, R. A. S. Luz, R. M. Iost, F. N. Crespilho, Evidence of short-range electron transfer of a redox enzyme on graphene oxide elec-trodes, Phys. Chem. Chem. Phys., 16, 17426–17436 (2014).

M. Sosna, A. Bonamore, L. Gorton, A. Boffi, E. E. Ferapontova, Direct electrochemistry and Os-polymer-mediated bioelectrocatalysis of NADH oxidation by Escherichia coli flavohemoglobin at graphite elec-trodes. Biosens. Bioelectron., 42, 219–224 (2013).

DOI: 10.1016/j.bios.2012.10.094.

K. So, S. Kawai, Y. Hamano, Y. Kitazumi, O. Shirai, M. Hibi, J. Ogawa, K. Kano, Improvement of a direct electron transfer-type fructose/dioxygen biofuel cell with a substrate-modified biocathode., Phys. Chem. Chem. Phys., 16, 4823–4829 (2014).

DOI: 10.1039/c3cp54888k

Y. Hibino, S. Kawai, Y. Kitazumi, O. Shirai, K. Kano, Construction of a protein-engineered variant of D-fructose dehydrogenase for direct electron transfer-type bioelectrocatalysis, Electrochem. Commun., 77, 112–115 (2017). DOI: 10.1016/j.elecom.2017.03.005

T. Siepenkoetter, U. Salaj-Kosla, E. Magner, The im-mobilization of fructose dehydrogenase on nanopo-rous gold electrodes for the detection of fructose, Chem. Electro. Chem., 4, 905–912 (2017).

DOI: 10.1002/celc.201600842

I. Sakinyte, J. Barkauskas, J. Gaidukevic, J. Razumiene, Thermally reduced graphene oxide: The study and use for reagentless amperometric D-fructose biosensors, Talanta, 144, 1096–1103 (2015).

DOI: 10.1016/j.talanta.2015.07.072

H.-Q. Xia, Y. Hibino, Y. Kitazumi, O. Shirai, K. Kano, Interaction between D-fructose dehydrogenase and methoxy-substituent-functionalized carbon surface to increase productive orientations, Electrochim. Acta, 218, 41–46 (2016). DOI: 10.1016/j.electacta.2016.09.093

S. Xu, S. D. Minteer, Investigating the impact of multi-heme pyrroloquinoline quinone-aldehyde dehydro-genase orientation on direct bioelectrocatalysis via site specific enzyme immobilization, ACS Catal., 3, 1756–1763 (2013). DOI: 10.1021/cs400316b.

Y. B. Vogel, A. Molina, J. Gonzalez, S. Ciampi, Quan-titative analysis of cyclic voltammetry of redox mono-layers adsorbed on semiconductors: Isolating electrode kinetics, lateral interactions and diode currents, Anal. Chem. 91, 5929–5937 (2019).

J. Gonzalez, J. A. Sequi, Influence of intermolecular interactions in the redox kinetics performance of sur-face confined probes by square-wave voltammetry, J. Electroanal. Chem., 854, 113549 (2019).

DOI: 10.1016/j.jelechem.2019.113549

R. Gulaboski, V. Mirceski, M. Lovric, I. Bogeski, Theoretical study of a surface electrode reaction pre-ceded by a homogeneous chemical reaction under conditions of square-wave voltammetry, Electrochem. Commun., 7, 515–522 (2005).

V. Mirceski, S. Komorsky-Lovric, M. Lovric, Square-wave voltammetry Theory and application. In Mono-graphs in Electrochemistry, (F. Scholz, ed.), Springer, Berlin, 2007.

S. Komorsky-Lovric, M. Lovric, Simulation of square-wave voltammograms of three-electron redox reaction, Electrochim. Acta, 56, 7189–7193 (2012).

S. Komorsky-Lovric, M. Lovric, Theory of square-wave voltammetry of two-step electrode reaction with kinetically stabilized intermediate, J. Electroanal. Chem., 660, 22–25 (2011).

S. Komorsky-Lovric, M. Lovric, Theory of square-wave voltammetry of two electron reduction with the intermediate that is stabilized by complexation, Elec-trochim. Acta, 69, 60–64 (2012).

J. J. Gooding, V. R. Gonçales, Recent advances in the molecular level modification of electrodes for bioelec-trochemistry, Curr. Opin. Electrochem., 5, 203–210 (2017).

S. V. Sokolov, E. Katelhon, E. R. G. Compton, Under-standing nano-impacts: reversible agglomeration and near-wall hindered diffusion, J. Electroanal. Chem., 779, 18–24 (2016).

X. Xiao, F.-R. F Fan, J. Zhou, A. J. Bard, Current tran-sients in single nanoparticle collision events. J. Am. Chem. Soc., 130, 16669–16677 (2008).

M. A. Edwards, D. A. Robinson, H. Ren, C. G. Cheyne, C. S. Tan, H. S. White, Nanoscale electro-chemical kinetics & dynamics: the challenges and op-portunities of single-entity measurements. Faraday Discuss., 210, 9–28 (2018).

H. Ma, H.-F. Fang, P.-J. Hu, W. Ma, Y.-T. Long, Ex-ploring dynamic interactions of single nanoparticles at interfaces for surface confined electrochemical behav-ior and size measurement, Nat. Commun., 11, 2307 (2020).

V. Mirceski, E. Laborda, D. Guziejewski, R. G. Comp-ton, New approach to electrode kinetic measurements in square-wave voltammetry: amplitude-based quasi-reversible maximum, Anal. Chem. 85, 5586–5594 (2013). DOI:10.1021/ac40008573

V. Mirceski, L. Stojanov, B. Ogorevc, Step potential as a diagnostic tool in square-wave voltammetry of qua-si-reversible electrochemical processes, Electrochim. Acta 327, 134997 (2019).

V. Mirceski, D. Guziejewski, M. Bozem, I. Bogeski, Characterizing electrode reactions by multisampling the current in square-wave voltammetry, Electrochim. Acta 213, 520–528 (2016).

D. Jadresko, D. Guziejewski, V. Mirceski, Electro-chemical faradaic spectroscopy, Chem. ElectroChem 5, 187–194 (2018).

V. Mirceski, L. Stojanov, R. Gulaboski, Double-Sampled differential square-wave voltammetry, J. Electroanal. Chem., 872, 114384, (2020).



  • There are currently no refbacks.

Copyright (c) 2020 Rubin Gulaboski, Valentin Mirceski

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.