Investigation of solvent effects on electronic absorption spectra of some substituted 1,2,4-triazoline-3-thiones

Mirjana Jankulovska, Lidija Šoptrajanova, Ilinka Spirevska, Katica Čolančevska-Ragenoviќ, Saško Ristovski

Abstract


The influence of the polarity of the solvent and hydrogen bonding on the electronic absorption spectra of some previously synthesized substituted 1,2,4-triazoline-3-thiones was studied. The electronic absorption spectra of investigated compounds were recorded in the region from 190 nm to 360 nm in eight protic (water, ethylene glycol, methanol, ethanol, propan-1-ol, propan-2-ol, butan-1-ol and tert-butanol) and five aprotic (acetonitrile, chloroform, dimethylsulfoxide, dimethylformamide and dioxane) solvents. Their absorption maxima appeared in the region between 250 nm and 260 nm as a result of the electron transitions in the 1,2,4-triazoline-3-thione ring. Using the method of linear solvation energy relationships (LSER), the effects of solvent polarity and hydrogen bonding on the electronic absorption spectra were interpreted. The results have shown that the influence of the aprotic solvents is more significant compared to that of the protic solvents.

Keywords


4-butyl-5-octyl-2,4-dihydro-3H-1,2,4-triazoline-3-thione; 4-allyl-5-octyl-2,4-dihydro-3H-1,2,4-triazoline- 3-thione; 4-phenyl-5-octyl-2,4-dihydro-3H-1,2,4-triazoline-3-thione; electronic absorption spectra; solvent effects; linear solvation energy relatio

Full Text:

PDF

References


M. Tandon, J. P. Barthwal, T. N. Bhall, K. P. Bhargava, Synthesis and antiinflamatory activity of some new 3-(osubstituted phenyl)-4-substituted-phenyl-5-alkyl/alkenylmercapto- 1H-1,2,4-triazoles, Indian J. Chem., 20B, 1017–1022 (1981).

A. A. B. Hazzaa, I. M. Labouta, M. G. Kassem, Synthesis, Antibacterial and Antifungal Activity of 4-Substituted-5- Aryl-1,2,4-Triazoles, Arch Pharm. Chem. Sci., 11 (2) 43– 57 (1983).

B. N. Goswami, J. C. S. Kataky, J. N. Baruah, Synthesis and antibacterial activity of 1-(-2,4-Dichlorobenzoyl)-4- substituted thiosemicarazides, 1,2,4-triazoles and their methyl derivatives, J. Heterocyclic Chem., 21, 1225– 1229 (1984).

A. R. Jalilian, S. Sattari, M. Bineshmarvasti, A. Shafiee, M. Daneshtalab, Synthesis and in vitro antifungal and cytotoxicity evaluation of thiazolo-4H-1,2,4-triazoles and 1,2,3-thiadiazolo-4H-1,2,4-triazoles-1,2,4-4H-triazolesthiazoles- 1,2,3-thiadiazoles, Arch. der Pharmazie, 333, 347–354 (2000).

P. J. Kothari, M. A. Mehlhoff, S. P. Singh, S. S. Parmar, V. I. Stenberg, Synthesis of 5-(1-Naphthylmethyl)-4-aryls- triazol-3-thiolyl/ylthioglycolic acids as possible antiinflammatory agents, J. Heterocyclic Chem., 17, 1369– 1372 (1980).

N. Guelerman, S. Rollas, M. Uelgen, Synthesis and in vitro microsomal metabolism of 4-ethyl-5-(4-fluorophenyl)- 2,4-dihydro-3H-1,2,4-triazole-3-thione and its potential metabolities, Boll. Chim. Farm., 137 (5), 140–143 (1998).

K. C. Ragenoviќ, V. Dimova, V. Kakurinov, D. M. Gabor, A. Buzarovska, Synthesis and antibacterial and antifungal activity of 4-substituted-5-aryl-1,2,4-triazole, Molecules, 6, 815–824 (2001).

A. S. Galabov, B. S. Galabov, N. A. Neykova, Structureactivity relationship of diphenylthiourea antivirals, J. Med. Chem., 23, 1048–1061 (1980).

S. Rollas, S. Buyuktimkin, A. Cevikbas, Platinum-mediated synthetic process for i4-1, 2,4-oxadiazolines, Arch. Pharm. (Weinheim), 324, 189–198 (1991).

B. S. Holla, B. Kalluraya, K. R. Sridhar, Synthesis of 4- (5-nitro-2-furfurylidene) amino-3-mercapto-5-(substitutedtriazoles as possible antibacterial agents, Curr. Sci., 56, 236–238 (1987).

N. Kalyoncuğlu, S. Rollas, D. Sur-Altiner, Y. Yeğenğlu, O. Aug, 1-

[p-(Benzoylamino) benzoyl]-4-substituted thiosemicarbazides: synthesis and antibacterial and antifungal activities, Pharmazie, 47, H. 4, 796–797 (1992).

K. C. Ragenoviќ, V. Dimova, V. Kakurinov, D. M. Gabor, Synthesis of 1-Nonanoyl/octadecanoyl 1-4-substituted Thiosemicarbazides and substituted 1,2,4-Triazoles as biological active compounds, J. Heterocyclic Chem., 40, 905–908 (2003).

M. J. Kamlet, R. W. Taft, The Solvatochromic Comparison Method. I. The -Scale of Solvent Hydrogen-Bond Acceptor (HBA) Basicities1, J. Am. Chem. Soc., 98, 377– 383 (1976).

M. J. Kamlet, R. W. Taft, The Solvatochromic Comparison Method. 2. The -Scale of Solvent Hydrogen-Bond donor (HBD) Acidities, J. Am. Chem. Soc., 98, 2886– 2894 (1976).

M. J. Kamlet, R. W. Taft, The solvatochromic comparison method. 6. The * scale of solvent polarities, J. Am. Chem. Soc., 98, 6027–6038 (1976).

S. Rollas, N. Kalyancıoğlu, D. Sur-Altıner, Y. Yeğenoğlu, 5- (4-Aminophenyl)-4-substituted-2,4-dihydro-3H-1,2,4- triazole-3-thiones: Synthesis and antibacterial and antifungal activities. Pharmazie, 48, 308–309 (1993).

M. Jankulovska, I. Spirevska, K. Č. Ragenoviќ, Behaviour of some newly synthesized substituted 1,2,4-triazoline- 3-thiones in sulfuric acid media, Bull. Chem. Technol. Macedonia, 25 (1) 29–37 (2006).

M. Jankulovska, I. Spirevska, L. Šoptrajanova, Determination of the dissociation constants of some newly synthesized derivatives of 1,2,4-triazoline-3-thione in sodium hydroxide media, Bull. Chem. Technol. Macedonia, 25 (2), 99–106 (2006).

A. Albert, E. P. Serjeant, The Determination of Ionization Constants, Chapman, London, 1971.

J. B. Nikolić, G. S. Ušćumlić, V. V. Krstić, Solvent effect on electronic absorption spectra of cyclohex-1-enylcarboxylic and 2-methylcyclohex-1-enylcarboxylic acids, J. Serb. Chem. Soc., 65 (5–6) 353–359 (2000).

C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, Weinheim, 2004, pp. 113–128.

G. Desiraju, T. Steiner, Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, Oxford/UK (1999) 117–129.




DOI: http://dx.doi.org/10.20450/mjcce.2010.171

Refbacks

  • There are currently no refbacks.




Copyright (c) 2016 Mirjana Jankulovska, Lidija Šoptrajanova, Ilinka Spirevska, Katica Čolančevska-Ragenoviќ, Saško Ristovski

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.