TiO2/ZnO: Type-II Heterostructures for electrochemical crystal violet dye degradation studies

Dilip Kumar Behara, Jalajakshi Tammineni, Mukkara Sudha Maheswari

Abstract


Semiconductor nanomaterials with proper band edge alignments forming “heterostructure” assemblies have significant importance in water splitting, dye degradation, and other electrochemical studies. The formed heterojunction between material phases facilitates fast charge carrier transport and, thereby, improves electrochemical performance in associated processes. Herein, we report a type-II heterostructure combining TiO2 and ZnO nanomaterials for electrochemical crystal violet dye degradation studies. The rationale in choosing the above materials (TiO2, ZnO) in the present study includes stability, lack of toxicity, and high oxidation power, but they also facilitate fast charge carrier movements due to proper band edge alignments, forming a type-II heterostructure assembly. Cyclic voltammetry, combined with ultraviolet-visible analysis, was used to identify the cathodic and anodic peak currents and trace the exact mechanism of dye degradation. The electro-catalytic performance of TiO2/ZnO heterostructured materials fabricated on titania (Ti) substrate show higher performance, in comparison to all individual material interfaces, due to synergistic interaction and synchronized charge transport.


Keywords


TiO2; ZnO; Type-II Heterostructure; Electrochemical; Dye degradation; Crystal violet.

Full Text:

PDF

References


H. M. Pinheiro, E. Touraud, O. Thomas, Aromatic amines from azo dye reduction: status review with em-phasis on direct UV spectrophotometric detection in tex-tile industry wastewaters, Dyes and pigments, 61, 121–139 (2004). DOI: doi.org/10.1016/j.dyepig.2003.10.009

G. S. Gupta, S. P. Shukla, G. Prasad, V. N. Singh, China clay as an adsorbent for dye house wastewaters, Environ Technol, 13, 925–936 (1992).

DOI: doi.org/10.1080/09593339209385228

R. A. Masoud, A. A., Haroun, N. H. El‐Sayed, Dyeing of chrome tanned collagen modified by in situ grafting with 2‐EHA and MAC, J. Appl. Poly. Sci., 101, 174–179 (2006). DOI: doi.org/10.1002/app.23160.

S. Komissarchik, &G. Nyanikova, Test systems and a method for express detection of synthetic food dyes in drinks, LWT-Food Sci. Technol, 58, 315–320 (2014). DOI:doi.org/10.1016/j.lwt.2014.03.038

R. W. Wagner, J. S. Lindsey, Boron-dipyrromethane dyes for incorporation in synthetic multi-pigment light-harvesting arrays, Pure Appl. Chem, 68, 1373–1380 (1996). DOI: doi.org/10.1351/pac199668071373

D. Wrobel, A. Boguta, R. M, Ion Mixtures of synthetic organic dyes in a photo-electronic cell, J. Photochem. Photobiol., A Chem., 138, 7–22 (2001).

DOI: doi.org/10.1016/S1010-6030(00)00377-4

N. Daneshwar, H. A. Sorkhabi, M. Kobya, Decoloriza-tion of dye solution containing Acid Red 14 by electro-coagulation with a comparative investigation of different electrode connections, J. Hazard. Mater, 112, 55–62 (2004). DOI: doi.org/10.1016/j.jhazmat.2004.03.021

A. Sakalis, D. Ansorgová, M. Holčapek, P. Jandera A. Voulgaropoulos, Analysis of sulphonated azodyes and their degradation products in aqueous solutions treated with a new electrochemical method, Int. J. Environ. Anal. Chem, 84, 875–888 (2004).

DOI:doi.org/10.1080/03067310310001626731

J. S. Do, M. L. Chen, Decolourization of dye-containing solutions by electrocoagulation, J. Appl. Electrochem. 24, 785–790 (1994). DOI: doi.org/10.1007/BF00578095

J. P. Lorimer, T. J. Mason, M. Plates, S. S. Phull, Dye effluent decolourisation using ultrasonically assisted elec-tro-oxidation, Ultrason. Sonochem, 7, 237–242 (2000). DOI: doi.org/10.1016/S1350-4177(99)00045-0

H. Ma, B. Wang, X. Luo, Studies on degradation of me-thyl orange wastewater by combined electrochemical pro-cess, J. Hazard. Mater, 149, 492–498 (2007).

DOI: doi.org/10.1016/j.jhazmat.2007.04.020

L. Fan, Y. Zhou, W. Yang, G. Chen, F. Yang, Electro-chemical degradation of aqueous solution of Amaranth azo dye on ACF under potentiostatic model, Dyes and Pigments, 76, 440–446 (2008).

DOI: doi.org/10.1016/j.dyepig.2006.09.013

L. Szpyrkowicz, C. Juzzolino, S. N. Kaul, S. Daniele, M. D. De Faveri, Electrochemical oxidation of dyeing baths bearing disperse dyes, Ind. Eng. Chem. Res, 39, 3241–3248 (2000). DOI: doi.org/10.1021/ie9908480

M. A. Sanroman, M. Pazos, M. T. Ricart, C. Cameselle, Electrochemical decolourisation of structurally different dyes, Chemosphere, 57, 233–239 (2004).

DOI: doi.org/10.1016/j.chemosphere.2004.06.019

M. Murati, N. Oturan, Z. Zdravkovski, J. P. Stanoeva, S. E. Aaron, J. J. Aaron, M. A. Oturan, Application of the electro-Fenton process to mesotrione aqueous solutions: Kinetics, degradation pathways, mineralization and evolu-tion of the toxicity, Maced. J. Chem. Chem. Eng., 33, 121–137 (2014).

A. Fernandes, A. Morao, M. Magrinho, A. Lopes, I. Gonçalves, Electrochemical degradation of CI acid orange 7, Dyes and Pigments, 61, 287–296 (2004).

DOI: doi.org/10.1016/j.dyepig.2003.11.008

R. Saravanan, F. Gracia Mohammad, Mansoob Khan, V. Poornima, Vinod Kumar Gupta, V. Narayanan, A. Ste-phen, ZnO/CdO nanocomposites for textile effluent deg-radation and electrochemical detection, J. Mol. Liq., 209, 374–380 (2015).

DOI: doi.org/10.1016/j.molliq.2015.05.040

Lin Yue, Kaihong Wang, Jianbo Guo, Jingliang Yang, Xiao Luo, Jing Lian, Li Wang, Enhanced electrochemical oxidation of dye wastewater with Fe2O3 supported cata-lyst, J. Ind. Eng. Chem. 20, 725–731 (2014).

DOI: doi.org/10.1016/j.jiec.2013.06.001

Z. M. Shen, D. Wu, J. Yang, T. Yuan, W. H Wang, J. P. Jia, Methods to improve electrochemical treatment effect of dye wastewater, J. Haz. Mat., 131, 90–97(2006). DOI: doi.org/10.1016/j.jhazmat.2005.09.010

S. Rajendran, M. Mansoob Khan, F. Gracia, Jiaqian Qin, Vinod Kumar Gupta, Stephen Arumainathan, Ce+3 ion induced visible light photocatalytic degradation and elec-trochemical activity of ZnO/CeO2 nanocomposite, Sci. Rep, 6, 31641 (2016).

DOI:doi.org/10.1038/srep31641

R. Pelegrini, P. Peralta-Zamora, A. R. de Andrade, J. Reyes, N. Durán, Electrochemically assisted photocatalyt-ic degradation of reactive dyes. App. Catal. B: Envi, 22, 83–90(1999).

DOI:doi.org/10.1016/S0926-3373(99)00037-5

Astam K. Patra, Arghya Dutta, Asim Bhaumik, Highly ordered mesoporous TiO2-Fe2O3 mixed oxide synthe-sized by sol-gel pathway: an efficient and reusable heter-ogeneous catalyst for dehalogenation reaction, ACS Appl. Mater. Interfaces, 4, 5022−5028 (2012).

DOI: doi.org/10.1021/am301394u

T. Jagadale, M. Kulkarni, D. Pravarthana, W. Ramadan, P. Thakur, Photocatalytic degradation of azo dyes using Au: TiO2, γ-Fe2O3: TiO2 functional nanosystems. J. Na-nosci. Nanotechnol, 12, 928–936 (2012).

DOI: 10.1166/jnn.2012.5171

Dilip Kumar Behara, Ashok Kumar Ummireddi, Vidyasagar Aragonda, Prashant Kumar Gupta, Raj Ganesh S. Pala and Sri Sivakumar, Coupled optical ab-sorption, charge carrier separation, and surface electro-chemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction, Phys. Chem. Chem. Phys., 18, 8364–8377 (2016).

DOI: doi.org/10.1039/C5CP04212G

A. K. Singh, Synthesis, characterization, electrical and sensing properties of ZnO nanoparticles, Adv. Powder Tech, 21, 609–613 (2010).

DOI: doi.org/10.1016/j.apt.2010.02.002

J. Tian, L. Chen, J. Dai, X. Wang, Y. Yin, P. Wu, Prepa-ration and characterization of TiO2, ZnO and TiO2/ZnO nanofilms via sol-gel process, Cer. Int., 35, 2261–2270 (2009). DOI: doi.org/10.1016/j.ceramint.2008.12.010

M. A. Habib, M. T. Shahadat, N. M. Bahadur, I. M. Ismail, A. J. Mahmood, Synthesis and characterization of ZnO-TiO2 nanocomposites and their application as photo-catalysts, Int. Nano Lett., 3, 5 (2013).

DOI:doi.org/10.1186/2228-5326-3-5

R. Sharma, F. Alam, A. K. Sharma, V. Dutta, S. K. Dhawan, ZnO anchored graphene hydrophobic nano-composite-based bulk heterojunction solar cells showing enhanced short-circuit current, J. Mat. Chem. C, 2, 8142–8151 (2014). DOI: doi.org/10.1039/C4TC01056F

Seema Singh, Vimal Chandra Srivastava, Indra Deo Mall, Mechanism of dye degradation during electrochemical treatment, J. Phys. Chem. C, 117, 15229–15240 (2013). DOI:doi.org/10.1021/jp405289f

H. J. Fan, S. T. Huang, W. H. Chung, J. L. Jan, W. Y. Lin, C. C. Chen, Degradation pathways of crystal violet by Fenton and Fenton-like systems: condition optimiza-tion and intermediate separation and identification, J. Haz. Mat, 171, 1032–1044 (2009).

DOI: doi.org/10.1016/j.jhazmat.2009.06.117

V. V. Perekotii, Z. A. Temerdashev, T. G. Tsyupko, E. A, Palenaya, Electrochemical behavior of crystal violet on glassy carbon electrodes, J. Anal. Chem, 57, 5, 448–451 (2002).

DOI: https://doi.org/10.1023/A:1015421927771

Milica Jović, Dalibor Stanković, Dragan Manojlović, Ivan Anđelković, Anđelija Milić, Biljana Dojčinović, Go-ran Roglić, Study of the electrochemical oxidation of reac-tive textile dyes using platinum electrode. Int. J. Electro-chem. Sci, 8, 168–183 (2013).

A. A. Peláez-Cid, S. Blasco-Sancho, F. M. Matysik, Determination of textile dyes by means of non-aqueous capillary electrophoresis with electrochemical detection. Talanta, 75, 5, 1362–1368 (2008).

DOI:https://doi.org/10.1016/j.talanta.2008.01.049

P. S. Palukuru, V. Devangam A., D. K. Behara, N, S-codoped TiO2/Fe2O3 heterostructure assemblies for elec-trochemical degradation of crystal violet dye, Iran. J. Chem. Chem, 39, 171–180, (2020).

DOI:10.30492/IJCCE.2020.33368

D. K. Behara, S. M. Mukkara, T. Jalajakshi, TiO2/Fe2O3: Type-I heterostructures for electrochemical dye degrada-tion/water splitting studies, J. Inst. Eng. India Ser. E, 100, 189–198 (2019).

DOI:doi.org/10.1007/s40034-019-00148-y.




DOI: http://dx.doi.org/10.20450/mjcce.2020.2058

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Dilip Kumar Behara, Jalajakshi Tammineni, Mukkara Sudha Maheswari

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.