Photoelectrochemical investigations of thermally formed films on titanium surfaces


  • Irena Mickova Faculty of Technology and Metallurgy, Ss. Cyril & Methodius University, Skopje



TiO<sub>2</sub> films, semiconductor, photocurrent, rutile structure


The semi-conducting and photoelectrical properties of TiO2 films prepared with thermal oxidation of titanium in the temperature range from 200 to 600 ºC were studied. Short theoretical background for application of photocurrent in semiconductor electrochemistry was presented. For all investigated temperatures and times of thermal treatments the semi-conducting properties as photocurrent peaks and band gap energies were determined. At lower temperatures the anodic values of photocurrent peaks confirmed the existence of n-type semiconducting TiO2 films with amorphous structure. With increasing the temperature and time of thermal treatment the development of crystalline structure in the film is followed with small decreasing of band gap energy. For films formed at higher temperatures and longer time of thermal treatment the determined band gap energies are close to the 3 eV that corresponds to the rutile structure of the film.


E. Becquerel – C. R. Acad. Sci. Paris, 9 561 (1839).

A. Heller (editor), Semiconductor Liquid-Junction Solar Cells, The Electrochemical Society Princeton, New Jersey (1977).

J. Radosavljević, T. Pavlović, M. Lambić, Solarna energetika i održivi razvoj, Gradjevinska knjiga, Beograd (2004).

R. Memming, Semiconductor Electrochemistry, Wiley- VCH Verlag GmbH (2001).

A. Bard, M. Stratmann, P. Licht (editors), Semiconductor Electrochemistry and Photoelectrochemistry, Wiley-VCH Verlag GmbH. Vol. 6 (2002).

I. Mickova, A. Prusi, Lj. Arsov, Electrochemical formation of semi-conducting oxides for solar energy conversion, Proceedings of the 3-rd WSEAS Int. Conf. on Energy, Environment & Sustainable Development, 205–209 (2007) Crete, Greece.

R. Breckenridge, W. Hosler, Electrical properties of titanium dioxide semiconductors, Physical Review, 91 (4), 793–802 (1953).

H. R. Sprunken, R. Schumacker, R. N. Schindler, Photoreduction processes on n-TiO2 electrodes, Ber. Bunsenges, Phys. Chem., 84, 1040–1045 (1980).

J. C. Pesant, P. Vennereau, Electrochemical behavior and photo-excitability of titanium oxides layer formed under low anodic polarisation conditions, J. Electroanal. Chem., 106, 103–113 (1980).

E. Hristova, Lj. Arsov, B. Popov, R. White, Ellipsometric and Raman spectroscopic study of thermally formed films on titanium, J. Electrochem. Soc., 144 (7), 2318–2322 (1997).

A. Prusi, Lj. Arsov, B. Haran, B. Popov, Anodic behavior of Ti in KOH Solutions, J. Electrochem. Soc., 149 (11), B491–B498 (2002).

M. A. Butler, Localized photoelectrochemical measurements of passive films on titanium, J. Electrochem. Soc. 130 (12), 2358–2362 (1983).

Lj. Arsov, C. Kormann, W. Plieth, Electrochemical synthesis and in situ Raman spectroscopy of thin films on titanium dioxide, J. Raman Spectrosc., 22, 573–575, (1991).

T. Ohtsuka, T. Otsuki, The Influence of the growth rate on the semiconductive properties of titanium anodic oxide films, Corros. Sci., 40 (6), 951–958 (1998).

A. Felske, W. Badawy, W. Plieth, The electrochemical and photoelectrochemical behavior of passivated Ti in nitric acid solutions, J. Electrochem. Soc., 137 (6), 1804– 1809 (1990).

A. Prusi, Lj. Arsov, The growth kinetics and optical properties of films formed under open circuit conditions on a titanium surface in potassium hydroxide solutions, Corros. Sci., 33 (1), 153–164 (1991).

R. Sathyamoorthy, P. Sudhager, S. Chandramohan, K. Vijaykumar, Photoelectrical properties of crystalline titanium dioxide thin films after thermo-annealing, Cryst. Res. Technol, 42 (5), 498–503 (2007).

J. Krysa, M. Zlámal, G. Waldner, Effect of oxidisable substrates on the photoelectrocatalytic properties of thermally grown and particulate TiO2 layers, J. Appl. Electrochem., 37, 1313–1319 (2007).

I. Mintsouli, N. Philippidis, I. Poulios, S. Sotiropoulos, Photoelectrochemical characterization of thermal and particulate titanium dioxide electrodes, J. Appl. Electrochem. 36, 463–474 (2006).

F. Di Quarto, M. Santamaria, P. Skeldon, G. Thompson, Photocurrent spectroscopy study of passive films on hafnium and hafnium-tungsten sputtered alloys, Electrochim. Acta, 48, 1143–1156 (2003).

J. Sukamato, C. McMillan, W. Smyrl, Photoelectrochemical investigations of thin metal-oxide films; TiO2, Al2O3 and HfO2 on parent metals, Electrochim. Acta 38 (1), 15–27 (1993).

I. Arsova, N. Hebestreit, N. Petrovska, A. Prusi, Lj. Arsov, Oxides formed on titanium by mechanical polishing, electrochemical polishing, etching, anodizing and thermal treatment, XIII Cong. of Chemis. and Technol. of Macedonia, ECH-9, 413–416 (2004).

A. Hugot-Le Goff, Structure of very thin TiO2 films studied by Raman spectroscopy with interference enhancement, Thin Solid Films, 142, 193–197 (1986).

M. Kozlowski, P. Tyler, W. Smyrl, Photoelectrochemical microscopy of oxide films on metals: Ti/TiO2 interface, Surface Sci., 194, 505–530 (1988).

Lj. Arsov, C. Kormann, W. Plieth, In situ Raman spectra of anodically formed titaniumdioxide layers in solutions of H2SO4, KOH and HNO3, J. Electrochem. Soc., 138 (10), 2964–2970 (1991).

H. Vidersson, M. Elmgren, S. Lindquist, Photoelectrochemical etching of polycrystalline TiO2 thin film electrodes, Surface Sci. 191, 144–154 (1988).




How to Cite

Mickova, I. (2009). Photoelectrochemical investigations of thermally formed films on titanium surfaces. Macedonian Journal of Chemistry and Chemical Engineering, 28(2), 181–188.