This is an outdated version published on 2022-05-31. Read the most recent version.

Preparation and application of testosterone sensor using polyurethane membranes by square wave stripping voltammetry

Authors

  • Cemre Zeynep Harman Inonu University
  • Öznur Güngör İnönü University

DOI:

https://doi.org/10.20450/mjcce.2022.2493

Keywords:

testosterone, sensor, polyurethane membranes, square-wave voltammetry

Abstract

A novel electrochemical sensor for testosterone detection has been prepared by the chemical modification of a gold electrode (AuE). For the electrode modification, specific polyurethane (PU) films were synthesized from hexamethylene diisocyanate, olivetol, polyethylene glycol-100 (PEG100) and β-cyclodextrin. The synthesized PUs were investigated as selective films, and were used to coat a AuE surface at different concentrations and thicknesses. The testosterone responses of the modified electrodes were investigated by square-wave voltammetry (SWV). One separated cathodic SWV peak was obtained for testosterone at –0.390 V, with the prepared PU-modified AuE in 0.1 M phosphate buffer (PB) (pH 7.2). The linearity of testosterone responses of the prepared PU modified electrode was obtained over a concentration range of 0.1–1.0 µM (R2 = 0.995). It was observed that the response of the electrode increased regularly and sensitively with increasing testosterone amount. The detection limit, relative standard deviation and sensitivity of modified electrode were found to be approximately 5.69 nM, 1.669 % and 98.331 %, respectively. The PU-modified AuE exhibited good selectivity and a low response time for testosterone. Therefore, the prepared testosterone sensor offers a good alternative for fast and practical testosterone determination in clinical or biomedical studies.

Author Biography

Cemre Zeynep Harman, Inonu University

Inonu University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, 44280, Malatya-Turkey

References

(1) Monerris, M. J.; D´Eramo, F.; Arévalo, F. J.; Fernán-dez, H.; Zon, M. A.; Molina, P. G., Electrochemical immunosensor based on gold nanoparticles deposited on a conductive polymer to determine estrone in water samples. Microchemical Journal, 2016, 129, 71–77.

https://doi.org/10.1016/j.microc.2016.06.001

(2) Bassil, N.; Alkaade, S.; Morley, J. E., The benefits and risks of testosterone replacement therapy: a review. Ther Clin. Risk Manag. 2009, 5, 427–448.

https://doi.org/ 10.2147/tcrm.s3025

(3) Wang, C.; Jackson, G.; Jones, T. H.; Matsumoto, A. M.; Nehra, A.; Perelman, M. A.; Swerdloff, R. S.; Traish, A.; Zitzmann, M.; Cunningham, G., Low tes-tosterone associated with obesity and the metabolic syndrome contributes to sexual dysfunction and car-diovascular disease risk in men with type 2 diabetes. Diabetes Care 2011, 34 (7), 1669–1675. https://doi.org/10.2337/dc10–2339

(4) Selvin, E.; Feinleib, M.; Zhang, L.; Rohrmann, S.; Rıfaı, N.; Nelson, W. G.; Dobs, A.; Basarıa, S.; Gold-en, S. H.; Platz, E. A., Androgens and diabetes in men: results from the Third National Health and Nutrition Examination Survey (NHANES III). Diabetes Care 2007, 30 (2), 234–238. https://doi.org/10.2337/dc06–1579

(5) Fink, H. A.; Ewing, S. K.; Ensrud, K. E.; Connor, E. B.; Taylor, B. C.; Cauley, J. A.; Orwoll, E. S., Associa-tion of testosterone and estradiol deficiency with oste-oporosis and rapid bone loss in older men. J Clin En-docrinol Metab. 2006, 91 (10), 3908–3915.

https://doi.org/10.1210/jc.2006–0173

(6) Lane, B. R.; Stephenson, A. J.; Galluzzi, C. M.; Lakin, M. M.; Klein, E. A., Low testosterone and risk of bio-chemical recurrence and poorly differentiated prostate cancer at radical prostatectomy. Urology 2008, 72 (6), 1240–1245.

https://doi.org/10.1016/j.urology.2008.06.001

(7) Rosano, G. M.; Cornoldi, A.; Fini, M., Effects of an-drogens on the cardiovascular system. J Endocrinol Invest. 2005, 28 (3), 32–38. PMID: 16042358

(8) Araujo, A. B.; Dixon, J. M.; Suarez, E. A.; Murad, M. H.; Guey, L. T.; Wittert, G. A., Endogenous testos-terone and mortality in men: A systematic review and meta–analysis. J Clin. Endocrinol. Metab. 2011, 96 (10), 3007–3019. https://doi.org/10.1210/jc.2011–1137

(9) Herold, D. A. Fitzgerald, R. L., Immunoassays for testosterone in women: better than a guess?. Clin Chem. 2003, 49 (8), 1250–1251.

https://doi.org/10.1373/49.8.1250

(10) Taieb, J.; Mathian, B.; Millot, F.; Patricot, M. C.; Mathieu, E.; Queyrel, N.; Lacroix, I.; Delpero, C. S.; Boudou, P., Testosterone measured by 10 immunoas-says and by isotope–dilution gas chromatography–mass spectrometry in sera from 116 men, women, and children. Clin Chem., 2003, 49 (8), 1381–1395.

https://doi.org/10.1373/49.8.1381

(11) Turpeinen, U.; Linko, S.; Itkonen, O.; Hämäläinen, E., Determination of testosterone in serum by liquid chromatography–tandem mass Spectrometry. The Scandinavian Journal of Clinical & Laboratory Inves-tigation, 2008, 68 (1), 50–57.

https://doi.org/10.1080/00365510701496496

(12) Wang, Y.; Gay, G. D.; Botelho, J. C.; Caudill, S. P.; Vesper, H. W., Total testosterone quantitative meas-urement in serum by LC–MS/MS. Clin Chim Acta 2014, 436, 263–267. https://doi.org/10.1016/j.cca.2014.06.009

(13) Blasco, M.; Carriquiriborde, P.; Marino, D.; Ronco, A. E.; Somoza, G. M. A quantitative HPLC–MS method for the simultaneous determination of testosterone, 11–ketotestosterone and 11-β hydroxyandrostenedi-one in fish serum. J Chromatogr B 2009, 877 (14–15), 1509–1515. https://doi.org/10.1016/j.jchromb.2009.03.028

(14) Vierhapper, H.; Nowotny, P.; Waldhäusl, W., Estima-tion by gas chromatography–mass spectrometry with selected ion monitoring of urinary excretion rates of 3α–androstanediol during/after I.V. administration of 13–labelled testosterone in man. Journal of Steroid Biochemistry 1988, 29 (1), 105–109.

https://doi.org/10.1016/0022–4731(88)90383–4

(15) Perez, H. L.; Wang, S.; Szapacs, M. E.; Yang, E., De-velopment of a highly sensitive and selective UPLC/MS/MS method for the simultaneous determina-tion of testosterone and 5α-dihydrotestosterone in hu-man serum to support testosterone replacement thera-py for hypogonadism. Steroids 2008, 73 (6), 601–610. https://doi.org/10.1016/j.steroids.2008.01.018

(16) Wang, G.; Hsieh, Y.; Cui, X.; Cheng, K. C.; Korf-macher, W. A., Ultra-performance liquid chromatog-raphy/tandem mass spectrometric determination of tes-tosterone and its metabolites in in vitro samples. Rapid Commun. Mass Spectrom. 2006, 20, 2215–2221.

https://doi.org/10.1002/rcm.2580

(17) Fountain, W.; Dumstorf, K.; Lowell, A. E.; Lodder, R. A.; Mumper, R. J. Near-infrared spectroscopy for the determination of testosterone in thin–film composites. Journal of Pharmaceutical and Biomedical Analysis 2003, 33 (2), 181–189.

https://doi.org/10.1016/S0731–7085(03)00345–5

(18) Ibayashi, H.; Nakamura, M.; Murakawa, S.; Uchikawa, T.; Tanioka, T.; Nakao, K., The determination of uri-nary testosterone using thin-layer chromatography and gas chromatography. Steroid 1964, 3 (5), 559–568.

https://doi.org/10.1016/0039–128X(64)90087–X

(19) Atwal, G. K.; Reynolds, J. C.; Mussell, C.; Champar-naud, E.; Knapman, T. W.; Ashcroft, A. E.; O'Connor, G.; Christie, S. D. R. Creaser, C. S., Determination of testosterone and epitestosterone glucuronides in urine by ultra–performance liquid chromatography-ion mo-bility–mass spectrometry. Analyst 2011, 136, 3911–3916. https://doi.org/10.1039/C1AN15450H

(20) Konieczna, L.; Plenis, A.; Oledzka, I.; Kowalski, P.; Baczek, T., Optimization of LC method for the deter-mination of testosterone and epitestosterone in urine samples in view of biomedical studies and anti-doping research studies. Talanta 2011, 83 (3), 804–814.

https://doi.org/10.1016/j.talanta.2010.10.044

(21) Ng, B. H.; Yuen, K. H., Determination of plasma tes-tosterone using a simple liquid chromatographic meth-od. J Chromatogr. B 2003, 793 (2), 421–426.

https://doi.org/10.1016/S1570–0232(03)00326–X

(22) Loi, V.; Vertzoni, M.; Vryonidou, A.; Phenekos, C. Development and validation of a simple reversed-phase high-performance liquid chromatography meth-od for the determination of testosterone in serum of males. J Pharm. Biomed. Anal. 2006, 41 (2), 527–532.

https://doi.org/10.1016/j.jpba.2005.11.021

(23) Titretir Duran, S.; Ayhan, N.; Aksoy, B.; Köytepe, S.; Paşahan, A., Preparation of triaminotriazinebased pol-yimide-modifed electrodes and their use for selective detection of catechin in green tea samples. Polymer Bulletin 2019, 77 (10), 5065–5082.

https://doi.org/10.1007/s00289–019–03005–5

(24) Alışık, F.; Burç, M.; Titretir Duran, S.; Güngör, Ö.; Cengiz, M. A.; Köytepe, S., Development of Gum Ar-abic based polyurethane membrane modified elec-trodes as voltammetric sensor for the detection of phenylalanine. Polymer Bulletin 2021, 78, 4699–4719.

https://doi.org/10.1007/s00289–021–03605–0

(25) Mirčeski, V.; Gulaboski, R., Recent achievements in square-wave voltammetry (a review). Maced. J. Chem. Chem. Eng. 2014, 33 (1), 1–12.

http://dx.doi.org/10.20450/mjcce.2014.515

(26) Gulaboski, R.; Mirčeski, V., Application of voltamme-try in biomedicine-recent achievements in enzymatic voltammetry. Maced. J. Chem. Chem. Eng. 2020, 39 (2), 1–14. http://dx.doi.org/10.20450/mjcce.2020.2152

(27) Taşkın, İ.; Güngör, Ö.; Titretir Duran, S., Voltammetric determination of forfenicol by using poly(3 methyl-thiophene) modifed glassy carbon electrode. Polymer Bulletin 2021, 78, 4721–4741.

https://doi.org/10.1007/s00289–021–03732–8

(28) Burc, M.; Asma, D.; Titretir Duran, S., Development of voltammetric melanin sensor with 2,5–dimethylfuran modified platinum electrode, Macedo-nian Journal of Chemistry and Chemical Engineering 2021, 40 (2), https://doi.org/10.20450/mjcce.2021.2399

(29) Levent, A.; Altun, A.; Yardım, Y.; Şentürk, Z., Sensi-tive voltammetric determination of testosterone in pharmaceuticals and human urine using a glassy car-bon electrode in the presence of cationic surfactant. Electrochimica Acta 2014, 128, 54–60.

https://doi.org/10.1016/j.electacta.2013.10.024

(30) Liu, W.; Ma, Y.; Sun, G.; Wang, S.; Deng, J.; Wei, H., Molecularly imprinted polymers on graphene oxide surface for EIS sensing of testosterone. Biosensors and Bioelectronic 2017, 92, 305–312.

https://doi.org/10.1016/j.bios.2016.11.007

(31) Moura, S. L.; De Moraes, R. R.; Dos Santos, M. A. P.; Pividorib, M. I.; Lopes, J. A. D.; De Lima Moreira, D.; Zucolotto, V.; Dos Santos Júnior, J. R., Electrochemi-cal detection in vitro and electron transfer mechanism of testosterone using a modified electrode with a co-balt oxide film. Sensors and Actuators B: Chemical 2014, 202, 469–474. https://doi.org/10.1016/j.snb.2014.05.104

(32) Goyal, R. N.; Gupta, V. K.; Chatterjee, S., Electro-chemical investigations of corticosteroid isomers — testosterone and epitestosterone and their simultaneous determination in human urine. Analytica Chimica Acta 2010, 657 (2), 147–153. https://doi.org/10.1016/j.aca.2009.10.035

(33) Heidarimoghadam, R.; Akhavan, O.; Ghaderi, E.; Hashemi, E.; Mortazavi, S. S.; Farmany, A., Graphene oxide for rapid determination of testosterone in the presence of cetyltrimethylammonium bromide in urine and blood plasma of athletes. Materials Science and Engineering: C 2016, 61, 246–250.

https://doi.org/10.1016/j.msec.2015.12.005

(34) Tanrıkut, E.; Özcan, İ.; Sel, E.; Köytepe, S.; Kuyumcu Savan, E., Simultaneous electrochemical detection of estradiol and testosterone using nickel ferrite oxide doped mesoporous carbon nanocomposite modified sensor. Journal of the Electrochemical Society, 2020, 167 (8), 087509. https://doi.org/10.1149/1945–7111/ab927f

(35) Vittal, R.; Gomathi, H.; Kim, K. J. Beneficial role of surfactants in electrochemistry and in the modification of electrodes. Adv. Colloid Interface Sci. 2006, 119 (1), 55. https://doi.org/10.1016/j.cis.2005.09.004

(36) Güngör, Ö.; Paşahan, A.; Cengiz, M. A.; Köytepe, S.; Seçkin, Turgay., Fructose-based polyurethane mem-branes: synthesis, characterization, and their use as voltammetric pH electrode. International Journal of Polymeric Materials and Polymeric Biomaterials 2015, 64, 563–569.

https://doi.org/10.1080/00914037.2014.996705

(37) Titretir Duran, S.; Paşahan, A.; Ayhan, N.; Güngör, Ö.; Cengiz, M. A.; Köytepe S., Synthesis, characterization of guar–containing polyurethane films and their non–enzymatic caffeic acid sensor applications. Polymer–Plastıcs Technology and Engıneerıng 2017, 56 (16), 1741–1751. https://doi.org/10.1080/03602559.2017.1289403

(38) Kuyumcu Savan, E.; Paşahan, A.; Aksoy, B.; Güngör, Ö.; Köytepe, S.; Seçkin, T., Preparation and properties of selective polyurethane films and their use for the development of biomedical dopamine sensor. Interna-tional Journal of Polymeric Materials and Polymeric Biomaterials 2016, 65 (8), 402–408.

http://dx.doi.org/10.1080/00914037.2015.1129952

(39) Liu, F.; Kildsig, D. O.; Mitra, A. K. Beta–cyclo-dextrin/steroid complexation: effect of steroid struc-ture on association equilibria. Pharm Res. 1990, 7 (8), 869–873.

https://doi.org/10.1023/a:1015973218303. PMID: 2235884.

(40) Luo, M.; Hua, Y.; Liang, Y.; Han, J.; Liu, D.; Zhao, W.; Wang, P., Synthesis of novel β-cyclodextrin func-tionalized S, N codoped carbon dots for selective de-tection of testosterone. Biosensors and Bioelectronics 2017, 98, 195–201. https://doi.org/10.1016/j.bios.2017.06.056

(41) Cai, W.; Sun, T.; Liu, P.; Chipot, C.; Shao, X., Inclu-sion mechanism of steroid drugs into β-cyclodextrins. Insights from free energy calculations. The Journal of Physical Chemistry B 2009, 113 (22), 7836–7843. https://doi.org/10.1021/jp901825w

(42) Chanphai, P.; Agudelo, D.; Vesper, A. R.; Bérubé, G.; Tajmir–Riahi, H. A., Effect of testosterone and its ali-phatic and aromatic dimers on DNA morphology. In-ternational journal of biological macromolecules 2017, 95, 850–855. https://doi.org/10.1016/j.ijbiomac.2016.09.090

(43) Ates, B.; Koytepe, S.; Karaaslan, M. G.; Balcioglu, S.; Gulgen, S. Biodegradable non-aromatic adhesive pol-yurethanes based on disaccharides for medical appli-cations. International Journal of Adhesion and Adhe-sives 2014, 49, 90–96.

https://doi.org/10.1016/j.ijadhadh.2013.12.012

(44) Balcioglu, S.; Parlakpinar, H.; Vardi, N.; Denkbas, E. B.; Karaaslan, M. G.; Gulgen, S.; Taslidere, E.; Ko-ytepe, S.; Ates, B., Design of xylose–based semisyn-thetic polyurethane tissue adhesives with enhanced bi-oactivity properties. ACS applied materials & interfac-es 2016, 8 (7), 4456–4466.

https://doi.org/10.1021/acsami.5b12279

(45) Holst, J. P.; Soldin, O. P.; Guo, T.; Soldin, S. J. Steroid hormones: relevance and measurement in the clinical laboratory. Clinics in laboratory medicine 2004, 24 (1), 105–118. https://doi.org/10.1016/j.cll.2004.01.004

Downloads

Published

2022-05-31

Versions

How to Cite

Harman, C. Z. ., & Güngör, Öznur. (2022). Preparation and application of testosterone sensor using polyurethane membranes by square wave stripping voltammetry. Macedonian Journal of Chemistry and Chemical Engineering, 41(1). https://doi.org/10.20450/mjcce.2022.2493

Issue

Section

Electrochemistry