Antibacterial and antibiofilm activities of sodium ibuprofen- and paracetamol-loaded nanofibers
DOI:
https://doi.org/10.20450/mjcce.2023.2584Keywords:
Ibuprofen-Na, Paracetamol, Nanofiber, Antibiofilm, AntibacterialAbstract
Nanofibers loaded with pharmaceutical agents for various medical purposes have become more important in recent years because of their advantages, such as control on release, gas permeability, high surface area, and lightweight matrices. In the present study, polylactic acid (PLA)-gelatin (Gel) nanofibers were successfully loaded with Ibuprofen-Na/Paracetamol (henceforth Ibu-Na and Par, respectively) by electrospinning. The nanofibers were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The Ibu-Na/Par content of the nanofibers was determined by using high-performance liquid chromatography (HPLC). Their antibacterial activities were tested against Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa PA01, opportunistic pathogenic bacteria which are frequently associated with infections. Moreover, their antibiofilm activities against P. aeruginosa and E. faecalis were also investigated.
The Ibu-Na-containing nanofibers exhibited antibacterial activity against S. aureus, E. coli, and E. faecalis. The inhibition zone diameters of PLA-Gel-Ibu-Na 300 against E. faecalis, S. aureus, and E. coli were calculated to be 23.0 ± 2.1 mm, 18.0 ± 1.5 mm, and 12.0 ± 1.2 mm, respectively. It was found that PLA-Gel-Ibu-Na 300 and PLA-Gel-Par 300 nanofibers’ capacity to show biofilm formation inhibition originated remarkable effects on P. aeruginosa, which were found to be 48 % and 50.4 %, respectively.
This study indicated that Ibu-Na/Par-loaded nanofibers are promising materials for wound healing applications.
References
(1) Park, H.-S.; Pham, C.; Paul, E.; Padiglione, A.; Lo, C.; Cleland, H., Early pathogenic colonisers of acute burn wounds: a retrospective review. Burns 2017, 43, 1757–1765. https://doi.org/10.1016/j.burns.2017.04.027
(2) Mayes, T.; Gottschlich, M. M.; James, L. E.; Allgeier, C.; Weitz, J.; Kagan, R. J., Clinical safety and efficacy of probiotic administration following burn injury. Journal of Burn Care & Research 2015, 36, 92–99. https://doi.org/10.1097/BCR.0000000000000139
(3) Estevinho, L.; Pereira, A. P.; Moreira, L.; Dias, L. G.; Pereira, E., Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food and Chemical Toxicology 2008, 46, 3774–3779. https://doi.org/10.1016/j.fct.2008.09.062
(4) Church, D.; Elsayed, S.; Reid, O.; Winston, B.; Lindsay, R., Burn wound infections. Clinical Microbiology Reviews 2006, 19, 403–434.
https://doi.org/10.1128/CMR.19.2.403-434.2006
(5) Pierce, C. A.; Voss, B., Efficacy and safety of ibuprofen and acetaminophen in children and adults: a meta-analysis and qualitative review. Annals of Pharmacotherapy 2010, 44, 489–506.
https://doi.org/10.1345/aph.1M332
(6) Cazoto, L. L.; Martins, D.; Ribeiro, M. G.; Durán, N.; Nakazato, G., Antibacterial activity of violacein against Staphylococcus aureus isolated from bovine mastitis. The Journal of Antibiotics 2011, 64, 395–397.
https://doi.org/10.1038/ja.2011.13
(7) Chan, E. W. L.; Yee, Z. Y.; Raja, I.; Yap, J. K. Y., Synergistic effect of non-steroidal anti-inflammatory drugs (NSAIDs) on antibacterial activity of cefuroxime and chloramphenicol against methicillin-resistant Staphylococcus aureus. Journal of Global Antimicrobial Resistance 2017, 10, 70–74.
https://doi.org/10.1016/j.jgar.2017.03.012
(8) Nguyen, V.-L.; Truong, C.-T.; Nguyen, B. C. Q.; Vo, T.-N. V.; Dao, T.-T.; Nguyen, V.-D.; Trinh, D.-T. T.; Huynh, H. K.; Bui, C.-B., Anti-inflammatory and wound healing activities of calophyllolide isolated from Calophyllum inophyllum Linn. PloS one 2017, 12, e0185674. https://doi.org/10.1371/journal.pone.0185674
(9) Zimmermann, P.; Curtis, N., Antimicrobial effects of antipyretics. Antimicrobial Agents and Chemotherapy 2017, 61, e02268-02216.
https://doi.org/10.1128/AAC.02268-16
(10) Trippella, G.; Ciarcià, M.; De Martino, M.; Chiappini, E., Prescribing controversies: an updated review and meta-analysis on combined/alternating use of ibuprofen and paracetamol in febrile children. Frontiers in Pediatrics 2019, 7, 217.
https://doi.org/10.3389/fped.2019.00217
(11) Scott, L. J., Intravenous ibuprofen. Drugs 2012, 72, 1099–1109.
https://doi.org/10.2165/11209470-000000000-00000
(12) Legg, T. J.; Laurent, A. L.; Leyva, R.; Kellstein, D., Ibuprofen sodium is absorbed faster than standard ibuprofen tablets: results of two open-label, randomized, crossover pharmacokinetic studies. Drugs in R&d 2014, 14, 283–290. https://doi.org/10.1007/s40268-014-0070-8
(13) Yuan, Z.; Zhao, J.; Zhu, W.; Yang, Z.; Li, B.; Yang, H.; Zheng, Q.; Cui, W., Ibuprofen-loaded electrospun fibrous scaffold doped with sodium bicarbonate for responsively inhibiting inflammation and promoting muscle wound healing in vivo. Biomaterials Science 2014, 2, 502–511. https://doi.org/10.1039/C3BM60198F
(14) Gandhi, M.; Thomson, C.; Lord, D.; Enoch, S., Management of pain in children with burns. International Journal of Pediatrics 2010.
https://doi.org/10.1155/2010/825657
(15) Azmi, R.; Salamat-Ahangari, R.; Soleymani, J.; Jouyban, A., Solubility of acetaminophen in ethanol+ water+ NaCl mixtures at various temperatures. Chemical Engineering Communications 2016, 203, 471–475. https://doi.org/10.1080/00986445.2015.1023301
(16) Bhattarai, N.; Li, Z.; Gunn, J.; Leung, M.; Cooper, A.; Edmondson, D.; Veiseh, O.; Chen, M. H.; Zhang, Y.; Ellenbogen, R. G., Natural‐synthetic polyblend nanofibers for biomedical applications. Advanced Materials 2009, 21, 2792–2797.
https://doi.org/10.1002/adma.200802513
(17) Sancakli, A.; Basaran, B.; Arican, F.; Polat, O., Effects of bovine gelatin viscosity on gelatin-based edible film mechanical, physical and morphological properties. SN Applied Sciences 2021, 3, 1–11.
https://doi.org/10.1007/s42452-020-04076-0
(18) Perez-Puyana, V.; Felix, M.; Cabrera, L.; Romero, A.; Guerrero, A., Development of gelatin/chitosan membranes with controlled microstructure by electrospinning. Iranian Polymer Journal 2019, 28, 921–931. https://doi.org/10.1007/s13726-019-00755-x
(19) Vink, E. T.; Glassner, D. A.; Kolstad, J. J.; Wooley, R. J.; O’Connor, R. P., The eco-profiles for current and near-future NatureWorks® polylactide (PLA) production. Industrial Biotechnology 2007, 3, 58–81.
https://doi.org/10.1089/ind.2007.3.058
(20) Bogdanova, A.; Pavlova, E.; Polyanskaya, A.; Volkova, M.; Biryukova, E.; Filkov, G.; Trofimenko, A.; Durymanov, M.; Klinov, D.; Bagrov, D., Acceleration of electrospun PLA degradation by addition of gelatin. International Journal of Molecular Sciences 2023, 24, 3535. https://doi.org/ 10.3390/ijms24043535
(21) Jaiswal, A., Nanofibrous scaffolds for tissue engineering applications. Brazilian Archives of Biology and Technology 2016, 59.
https://doi.org/10.1590/1678-4324-2016150644
(22) Ranjbar-Mohammadi, M.; Nouri, M., Production and in vitro analysis of catechin incorporated electrospun gelatin/poly (lactic acid) microfibers for wound dressing applications. Journal of Industrial Textiles 2022, 51, 7529S–7544S. https://doi.org/10.1177/15280837211060883
(23) Xu, F.; Wang, H.; Zhang, J.; Jiang, L.; Zhang, W.; Hu, Y., A facile design of EGF conjugated PLA/gelatin electrospun nanofibers for nursing care of in vivo wound healing applications. Journal of Industrial Textiles 2022, 51, 420S–440S.
https://doi.org/10.1177/1528083720976348
(24) Chen, H.; Zhang, H.; Shen, Y.; Dai, X.; Wang, X.; Deng, K.; Long, X.; Liu, L.; Zhang, X.; Li, Y., Instant in-situ tissue repair by biodegradable PLA/gelatin nanofibrous membrane using a 3D printed handheld electrospinning device. Frontiers in Bioengineering and Biotechnology 2021, 9.
https://doi.org/10.3389/fbioe.2021.684105
(25) O'Toole, G. A., Microtiter dish biofilm formation assay. JoVE (Journal of Visualized Experiments) 2011, e2437. https://doi.org/10.3791/2437
(26) Maslakci, N. N.; Ulusoy, S.; Uygun, E.; Çevikbaş, H.; Oksuz, L.; Can, H. K.; Uygun Oksuz, A., Ibuprofen and acetylsalicylic acid loaded electrospun PVP-dextran nanofiber mats for biomedical applications. Polymer Bulletin 2017, 74, 3283–3299.
https://doi.org/10.1007/s00289-016-1897-7
(27) Mohiti‐Asli, M.; Saha, S.; Murphy, S.; Gracz, H.; Pourdeyhimi, B.; Atala, A.; Loboa, E., Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo. Journal of Biomedical Materials Research, Part B: Applied Biomaterials 2017, 105, 327–339.
https://doi.org/10.1002/jbm.b.33520
(28) Roy, B. C.; Das, C.; Hong, H.; Bett i, M.; Bruce, H. L., Extraction and characterization of gelatin from bovine heart. Food Bioscience 2017, 20, 116–124.
https://doi.org/10.1016/j.fbio.2017.09.004
(29) Kister, G.; Cassanas, G.; Vert, M., Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly (lactic acid) s. Polymer 1998, 39, 267–273.
https://doi.org/10.1016/S0032-3861(97)00229-2
(30) Dai, L.; Wu, T.-Q.; Xiong, Y.-S.; Ni, H.-B.; Ding, Y.; Zhang, W.-C.; Chu, S.-P.; Ju, S.-Q.; Yu, J., Ibuprofen-mediated potential inhibition of biofilm development and quorum sensing in Pseudomonas aeruginosa. Life Sciences 2019, 237, 116947.
https://doi.org/10.1016/j.lfs.2019.116947
(31) Shah, P. N.; Marshall-Batty, K. R.; Smolen, J. A.; Tagaev, J. A.; Chen, Q.; Rodesney, C. A.; Le, H. H.; Gordon, V. D.; Greenberg, D. E.; Cannon, C. L., Antimicrobial activity of ibuprofen against cystic fibrosis-associated Gram-negative pathogens. Antimicrobial Agents and Chemotherapy 2018, 62, e01574–01517. https://doi.org/10.1128/AAC.01574-17
(32) Seleem, N. M.; Atallah, H.; Abd El Latif, H. K.; Shaldam, M. A.; El-Ganiny, A. M., Could the analgesic drugs, paracetamol and indomethacin, function as quorum sensing inhibitors? Microbial Pathogenesis 2021, 158, 105097.
Downloads
Published
Versions
- 2023-07-01 (2)
- 2023-05-15 (1)
How to Cite
Issue
Section
License
Copyright (c) 2023 Gürkan Alkan, Seyhan Ulusoy, Mert Akgün, Ayhan Oral
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.