This is an outdated version published on 2023-06-29. Read the most recent version.

Quantitative determination of hydroquinone via electrochemical methods at nano-architecture platinum electrode


  • Ahmed A Al-Owais
  • Ibrahim S El-Hallag
  • Elsayed H. El-Mossalamy



Hydrooquinone, convolutive cyclic voltammetry, mesoporous, hexagonal, platinum


Hydroquinone (HQ) was electrochemically measured using convolutive cyclic voltammetry and differential pulse voltammetry (DPV) on a nano-architecture mesoporous platinum film electrochemically grown from a hexagonal liquid crystalline template of C16EO8 surfactant in 1.0 mol/l HClO4. The HQ cyclic voltammograms produced one oxidative peak in the forward sweep of potential and one reductive peak in the reverse sweep. The effect of HQ concentration was investigated using the different electrochemical methods mentioned above. The modified platinum electrode exhibits good sensitivity for the determination of the HQ compound in 1.0 mol/l HClO4. The best executive was found for the i-t curve method developed from cyclic voltammetry of HQ. It exhibits a linear peak current response over the concentration range of 8 to 55 µmol/l, with a detection limit of 0.5726 µmol/l and a quantification limit of 1.9088 µmol/l, confirming the accuracy and sensitivity of this quick, cheap, and easy method.


(1) Hudari, F. F.; De Almeida, L. C; Da Silva, B. F.; Zanoni, M. V. B., Voltammetric sensor for simultaneous determi-nation of p-phenylenediamine and resorcinol in permanent hair dyeing and tap water by composite carbon nano-tubes/chitosan modified electrode. Microchem. J. 2014, 55, 261–268.

(2) Gomez, A. R.; Olsina, R. A.; Martı́nez, L. D.; Silva, M. F., Simultaneous determination of cloramphenicol, sali-cylic acid and resorcinol by capillary zone electrophoresis and its application to pharmaceutical dosage forms. Ta-lanta. 2003, 61, 233–238.

(3) Yang, C.; Chai, Y.; Yuan, R.; Xu, W.; Chen, S., Gold na-noparticle–graphene nanohybrid bridged 3-amino-5- mer-capto-1,2,4-triazole-functionalized multiwall carbon nano-tubes for the simultaneous determination of hydroqui-none, catechol, resorcinol and nitrite. Anal.Methods. 2013, 5, 666–672.

(4) Zhang, H.; Bo, X.; Guo, L, Electrochemical preparation of porous graphene and its electrochemical application in the simultaneous determination of hydroquinone, cate-chol, and resorcinol. Sens. Actuators B Chem. 2015, 220, 919–926. DOI:10.1016/j.snb.2015.06.035

(5) Zhang, D.; Peng, Y.; Qi, H.; Gao, Q.; Zhang, C., Appli-cation of multielectrode array modified with carbon nano-tubes to simultaneous amperometric determination of di-hydroxybenzene isomers. Sens. Actuators B Chem. 2009, 136, 113–121.

(6) Ding, Y.-P.; Liu, W.-L.; Wu, Q.-S.; Wang, X.-G., Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltam-metry. J. Electroanal. Chem. 2005, 575, 275–280.

(7) Pistonesi, M. F.; Di Nezio, M. S.; Centurión, M. E.; Pal-omeque, M. E.; Lista, A. G;. Band, B. S. F., Determina-tion of phenol, resorcinol and hydroquinone in air sam-ples by synchronous fluorescence using partial least-squares (PLS). Talanta. 2006, 69, 1265–1268.

(8) Prathap, M. A.; Satpati, B.; Srivastava, R., Facile prepara-tion of polyaniline/MnO2 nanofibers and its electrochemi-cal application in the simultaneous determination of cate-chol, hydroquinone, and resorcinol. Sens. Actuators B Chem. 2013, 186, 67–77.

(9) Suea-Ngam, A.; Rattanarat,P.; Chailapakul, O.; Srisa-Art, M., Electrochemical droplet-based microfluidics using chip-based carbon paste electrodes for high-throughput analysis in pharmaceutical applications. Anal. Chim. Acta. 2015, 883, 45–54.

(10) Charoenkitamorn, K.; Chaiyo, S.; Chailapakul, O.; Siangproh, W., Low-cost and disposable sensors for the simultaneous determination of coenzyme Q10 and α-lipoic acid using manganese(IV) oxide-modified screen-printed graphene electrodes. Anal. Chim. Acta. 2018, 1004, 22–31.

(11) Bogeski, I.; Gulaboski, R.; Kappl, R.; Mirceski. V.; Stefova, M.; Petreska, J.; Hoth, M., Calcium binding and transport by coenzyme Q. J. Am. Chem. Soc. 2011, 133, 9293–9303.

(12) Quan, M.; Sanchez, D.; Wasylkiw, M. F.; Smith, D. F., Voltammetry of quinones in unbuffered aqueous solu-tion: reassessing the roles of proton transfer and hydro-gen bonding in the aqueous electrochemistry of quinones. J. Am. Chem. Soc. 2007, 129, 12847–12856.

(13) Gulaboski, R.; Markovski, V.; Jihe, Z., Redox chemistry of coenzyme Q — a short overview of the voltammetric features. J. Solid State Electrochem. 2016, 20, 3229–3238.

(14) Gulaboski, R.; Mirceski, V., Application of voltammetry in biomedicine - recent achievements in enzymatic volt-ammetry. Maced. J. Chem. Chem. Eng. 2020, 39, 153–166.

(15) Mirceski, V.; Gulaboski, R., Recent achievements in square-wave voltammetry: a review. Maced. J. Chem. Chem. Eng. 2014, 33, 1–12.

(16) Gulaboski, R., The future of voltammetry. Maced. J. Chem. Chem. Eng. 2022, 41, 151–162.

(17) Bagheri, H.; Shirzadmehr, A.; Rezaei, M.; Khoshsafar, H., Determination of tramadol in pharmaceutical products and biological samples using a new nanocomposite car-bon paste sensor based on decorated nanogra-phene/tramadol-imprinted polymer nanoparticles/ionic. liquid, Ionics. 2018, 24, 833–843.

(18) Zeinali, H.; Bagheri, H.; Monsef-Khoshhesab, Z.; Khosh-safar, H.; Hajian, A., Nanomolar simultaneous determina-tion of tryptophan and melatonin by a new ionic liquid carbon paste electrode modified with SnO2-Co3O4@rGO nanocomposite. Mater. Sci. Eng. C. 2017, 71, 386–394.

(19) Ma, L.; Zhao, G-C., Simultaneous determination of hy-droquinone, catechol and resorcinol at graphene doped carbon ionic liquid electrode. Int. J. Electrochem. Sci. 2012, 2012, 1–9.

(20) Yin, H.; Zhang, Q.; Zhou, Y.; Ma, Q.; Zhu, L.; Ai, S., Electrochemical behavior of catechol, resorcinol and hy-droquinone at graphene–chitosan composite film modified glassy carbon electrode and their simultaneous determina-tion in water samples. Electrochim. Acta. 2011, 56, 2748–2753.

(21) Gupta, V. K.; Jain, R.; Nayak, A.; Agarwal, S.; Shrivastava, M., Removal of the hazardous dye btartra-zine by photodegradation on titanium dioxide surface. Mater. Sci. Eng. C. 2011, 31, 1062–1067.

(22) Gupta, V. K.; Ali, I.; Saleh, T. A.; Siddiqui, M.; Agarwal, S., Chromium removal from water by activated carbon developed from waste rubber tires. Environ. Sci. Pollut. Res. 2013, 20, 1261–1268.

(23) Yukird, J.; Kongsittikul, P.; Qin, J.; Chailapakul, O.; Rodthongkum, N., ZnO@graphene nanocomposite modi-fied electrode for sensitive and simultaneous detection of Cd(II) and Pb(II). Synth. Met. 2018, 245, 251–259.

(24) Daneshgar, P.; Norouzi, P.; Ganjali, M. R.; Zamani, H. A., Ultrasensitive flow-injection electrochemical method for detection of anticancer drug tamoxifen. Talanta. 2009, 77, 1075–1080.

(25) Zaheiritousi, N.; Zamani, H. A.; Abedi, M. R.; Meghdadi, S., Fabrication of a new modified Tm3-carbon paste sen-sor using multi-walled carbon nanotubes (MWCNTs) and nanosilica based on 4-hydroxy salophen. Int. J. Electro-chem. Sci. 2017, 12, 2647–2657.

(26) Boobphahom, S.; Rattanawaleedirojn, P.; Boonyong-maneerat, Y.; Rengpipat, S.; Chailapakul, O.; Rodthongkum, N., TiO2 sol/graphene modified 3D po-rous Ni foam: A novel platform for enzymatic electro-chemical biosensor. J. Electroanal. Chem. 2019, 833, 133–142.

(27) Saglam,O.; Dilgin, D. G.; Ertek, B.; Dilgin, Y., Differen-tial pulse voltammetric determination of eugenol at a pencil graphite electrode. Mater Sci Eng C. 2016, 60, 156–162.

(28) Naik, T. S. S. K.; Swamy, B. E. K., Poly (phenosafra-nine)/SAOS modified sensor for the determination of do-pamine and uric acid. Anal. Bioanal. Electrochem. 2017, 9, 424–438.

(29) El-Hallag , I. S.; Ghanem, M. A.; El-Mossalamy, E. H.; Tartour, A. R., Quantitative Determination of Catechol via Cyclic Voltammetry, Convolution-Deconvolution Voltammetry, and Differential Pulse Voltammetry at a Mesoporous Nanostructured Platinum Electrode. J. New Mater. Electrochem. Syst. 2022, 25, 244-250.

(30) Bartlett, P. N.; Gollas, B.; Guerin, S., The preparation and characterisation of H1-e palladium films with a regular hexagonal nanostructure formed by electrochemical depo-sition from lyotropic liquid crystalline phases. Phys.Chem.Chem.Phys. 2002, 4, 3835–3842.

(31) Ghanem, M. A.; Bartlett, P. N.; Birkin, P. N.; de Groot, P.; Sawicki, M., The Electrochemical deposition of nanostructured cobalt films from lyotropic liquid crystal-line media. J. Electrochem. Soc. 2001, 148, C119.

(32) Nelson, P. A.; Elliott, J. M.; Attard, G. S.; Owen, J. R., Mesoporous nickel/nickel oxide- a nanoarchitectured elec-trode. Chem.Mater. 2002, 14, 524–529.

(33) Guo, R.; Zhang, B.; Xiufeng Liu, X., Electrodeposition of nanostructured Pt films from lyotropic liquid crystalline phases on α-Al2O3 supported dense Pd membranes. Appl. Surf. Sci. 2007, 254, 538–543.

(34) Birkin, P. R.; Elliot, J. M.; Watson Y. E., Electrochemical reduction of oxygen on mesoporous platinum microelec-trodes. Chem. Commun. 2000, 1693–1694.

(35) Evans, S. A. G.; Elliott, J. M.; Andrews, L. M.; Bartlett, P. N.; Doyle, P. J.; Denuault, G., Detection of hydrogen peroxide at mesoporous platinum microelectrodes. Anal. Chem. 2002, 74, 1322–1326.

(36) Park, S.; Chung, T. D.; Kim, H. C., Nonenzymatic glu-cose detection using mesoporous platinum, Anal. Chem. 2003, 75, 3046–3049.

(37) Kucernak, A.; Jiang, J., Mesoporous platinum as a catalyst for oxygen electroreduction and methanol electrooxida-tion. Chem. Eng. J. 2003, 93, 81–90.

(38) Miller, J. N.; Miller, J. C., Statistics and Chemometrics for Analytical Chemistry, Pearson Education, 6th edition. Ashford Colour Press Ltd., Gosport, UK, 2010. ISBN: 0273730428, 978 -0273730422

(39) Chitravathi, S.; Swamy, B. E. K.; Mamatha, G. P.; Sheri-gara, B. S., Determination of salbutamol sulfate by Alcian blue modified carbon paste electrode: A cyclic voltammet-ric study. Chem. Sensors. 2013, 3, 1–8.

(40) Naik, T. S. S.; Swamy, B. E. K. Modification of carbon paste electrode by electrochemical polymerization of neu-tral red and its catalytic capability towards the simultane-ous determination of catechol and hydroquinone: A volt-ammetric study. J. Electroanal. Chem. 2017, 804, 78–86.

(41) Umasankar, Y.; Periasamy, A. P.; Chen, S. M. Electroca-talysis and simultaneous determination of catechol and quinol by poly(malachite green) coated multiwalled carbon nanotube film. Anal. Biochem. 2011, 411, 71–79.

(42) Hu, F.; Chen, S.; Wang, C.; Yuan, R.; Yuan, D.; Wang, C., Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for sim-ultaneous determination of catechol, hydroquinone, p-cresol and nitrite. Anal. Chim. Acta. 2012, 724, 40–46.

(43) Ganesh, P. S,; Kuma, B. E.; Swamy, B.E.K., Electroanal-ysis of catechol in presence of hydroquinone at poly(calmagite) modified carbon paste electrode: A volt-ammetric study. Sci. Lett. J. 2016, 5, 1–8.

(44) Chetankumar, K.; Swamy, B. E. K.; Sharma, S. C., Poly(benzoguanamine) modified sensor for catechol in presence of hydroquinone: A voltammetric study. J. Elec-troanal. Chem. 2019, 849, 113365.

(45) Chetankumar, K.; Swamy, K., Electrochemical Investiga-tion of catechol and hydroquinone at poly(o-phenylenediamine) modified carbon paste electrode: A voltammetric study. Anal. Bioanal. Electrochem. 2019, 11, 1638–1650.

(46) A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications. John Wiley & Sons, New York. 2nd edition, 2001.

(47) Imbeaux, J. C.; Savéant, J. M., Convolutive potential sweep voltammetry. I: Introduction, J. Electroanal.Chem. 1973, 44, 169–187.

(48) Lovrić , M.; Komorsky-Lovrić, S., Theory of square-wave voltammetry of two-electron reduction with the ad-sorption of intermediate. Int. J. Electrochem. 2012, 1–8.

(49) Hassine, C. B. A.; Kahri, H.; Barhoumi, H., Simultane-ous determination of catechol and hydroquinone using nickel nanoparticlespoly-4 nitroaniline nanocomposite modified glassy carbon electrode. IEEE. Sens. J. 2021, 21, 18864–1887.





How to Cite

A Al-Owais, A., S El-Hallag, I. . . ., & H. El-Mossalamy , E. . (2023). Quantitative determination of hydroquinone via electrochemical methods at nano-architecture platinum electrode. Macedonian Journal of Chemistry and Chemical Engineering, 42(1).