This is an outdated version published on 2023-12-24. Read the most recent version.

Single-step, electrophoretically deposited hydroxyapatite/poly(vinyl alcohol)/chitosan/gentamicin coating for biomedical applications

Authors

DOI:

https://doi.org/10.20450/mjcce.2023.2775

Keywords:

electrophoretic deposition, Chitosan, poly(vinyl alcohol),, gentamicin release, antibacterial

Abstract

Biocomposite hydroxyapatite/poly(vinyl alcohol)/chitosan/gentamicin coatings were fabricated on titanium by electrophoretic deposition process (EPD) from an aqueous suspension using the constant voltage method.  Characterization of the deposited coatings was performed by scanning electron microscopy with field emission (FE–SEM), Fourier transform infrared spectroscopy (FT–IR) and X-ray diffraction (XRD) after immersion in simulated body fluid (SBF) at 37 °C. The concentration of the released gentamicin was determined using a high-performance liquid chromatography (HPLC) coupled with a mass spectrometer (MS). The release profile confirmed an initial “burst-release effect” with ~ 30% of gentamicin released in the first 48 h, which could be of assistance in the prevention of biofilm formation. Antibacterial activity was proven by the agar diffusion method on Staphylococcus aureus TL and Escherichia coli ATCC 25922 bacterial strains. Cytotoxicity was tested by the dye exclusion test (DET) on MRC-5 and L929 fibroblast cell lines, with both coatings expressing nontoxicity. The results showed the high applicability potential of a  poly(vinyl alcohol)-based biocomposite coating for medical purposes.

References

(1) Brokesh, A. M.; Gaharwar, A. K. Inorganic Biomaterials for Regenerative Medicine. ACS Appl. Mater. Interfaces 2020, 12 (5), 5319–5344. https://doi.org/10.1021/acsami.9b17801.

(2) Khan, A. S.; Syed, M. R. A Review of Bioceramics-Based Dental Restorative Materials. Dent. Mater. J. 2019, 38 (2), 163–176. https://doi.org/10.4012/dmj.2018-039.

(3) Zhang, X.; Song, G.; Qiao, H.; Lan, J.; Wang, B.; Yang, H.; Ma, L.; Wang, S.; Wang, Z.; Lin, H.; Han, S.; Kang, S.; Chang, X.; Huang, Y. Novel Ternary Vancomycin/Strontium Doped Hydroxyapatite/Graphene Oxide Bioactive Composite Coatings Electrodeposited on Titanium Substrate for Orthopedic Applications. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 603 (May), 125223. https://doi.org/10.1016/j.colsurfa.2020.125223.

(4) Kaur, M.; Singh, K. Review on Titanium and Titanium Based Alloys as Biomaterials for Orthopaedic Applications. Mater. Sci. Eng. C 2019, 102 (December 2018), 844–862. https://doi.org/10.1016/j.msec.2019.04.064.

(5) Eliaz, N. Corrosion of Metallic Biomaterials: A Review. Materials (Basel). 2019, 12 (3). https://doi.org/10.3390/ma12030407.

(6) Quinn, J.; McFadden, R.; Chan, C. W.; Carson, L. Titanium for Orthopedic Applications: An Overview of Surface Modification to Improve Biocompatibility and Prevent Bacterial Biofilm Formation. iScience 2020, 23 (11), 101745. https://doi.org/10.1016/j.isci.2020.101745.

(7) Stepanovska, J.; Matejka, R.; Rosina, J.; Bacakova, L.; Kolarova, H. Treatments for Enhancing the Biocompatibility of Titanium Implants. Biomed. Pap. 2020, 164 (1), 23–33. https://doi.org/10.5507/bp.2019.062.

(8) Chouirfa, H.; Bouloussa, H.; Migonney, V.; Falentin-Daudré, C. Review of Titanium Surface Modification Techniques and Coatings for Antibacterial Applications. Acta Biomater. 2019, 83, 37–54. https://doi.org/10.1016/j.actbio.2018.10.036.

(9) Ciobanu, G.; Harja, M. Investigation on Hydroxyapatite Coatings Formation on Titanium Surface. IOP Conf. Ser. Mater. Sci. Eng. 2018, 444 (3). https://doi.org/10.1088/1757-899X/444/3/032007.

(10) Kien, P. T.; Quan, T. N.; Tuyet Anh, L. H. Coating Characteristic of Hydroxyapatite on Titanium Substrates via Hydrothermal Treatment. Coatings 2021, 11 (10), 1–11. https://doi.org/10.3390/COATINGS11101226.

(11) Mahanty, A.; Shikha, D. Changes in the Morphology, Mechanical Strength and Biocompatibility of Polymer and Metal/Polymer Fabricated Hydroxyapatite for Orthopaedic Implants: A Review. J. Polym. Eng. 2022, 42 (4), 298–322. https://doi.org/10.1515/polyeng-2021-0171.

(12) Abdulghani, S.; Mitchell, G. R. Biomaterials for in Situ Tissue Regeneration: A Review. Biomolecules 2019, 9 (11). https://doi.org/10.3390/biom9110750.

(13) Raut, H. K.; Das, R.; Liu, Z.; Liu, X.; Ramakrishna, S. Biocompatibility of Biomaterials for Tissue Regeneration or Replacement. Biotechnol. J. 2020, 15 (12), 1–14. https://doi.org/10.1002/biot.202000160.

(14) Rajabi, A.; Esmaeili, A. Preparation of Three-Phase Nanocomposite Antimicrobial Scaffold BCP/Gelatin/45S5 Glass with Drug Vancomycin and BMP-2 Loading for Bone Regeneration. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 606 (August), 125508. https://doi.org/10.1016/j.colsurfa.2020.125508.

(15) Jiménez-Gómez, C. P.; Cecilia, J. A. Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules 2020, 25 (17). https://doi.org/10.3390/molecules25173981.

(16) Song, Z.; Wang, J.; Tan, S.; Gao, J.; Wang, L. Conductive Biomimetic Bilayer Fibrous Scaffold for Skin Regeneration. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 656 (PA), 130211. https://doi.org/10.1016/j.colsurfa.2022.130211.

(17) Mabrouk, M.; Abd El-Wahab, R. M.; Abo-Elfadl, M. T.; Beherei, H. H.; Selim, M. M.; Ibrahim, A. M.; Das, D. B. Magnetic Nanosystems Substituted with Zinc for Enhanced Antibacterial, Drug Delivery and Cell Viability Behaviours. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 650 (July), 129629. https://doi.org/10.1016/j.colsurfa.2022.129629.

(18) Massarelli, E.; Silva, D.; Pimenta, A. F. R.; Fernandes, A. I.; Mata, J. L. G.; Arm, H.; Saramago, B.; Serro, A. P. Polyvinyl Alcohol / Chitosan Wound Dressings Loaded with Antiseptics. Int. J. Pharm. 2021, 593 (120110). https://doi.org/10.1016/j.ijpharm.2020.120110.

(19) Kumar, A.; Han, S. S. PVA-Based Hydrogels for Tissue Engineering: A Review. Int. J. Polym. Mater. Polym. Biomater. 2016, 4037 (June). https://doi.org/10.1080/00914037.2016.1190930.

(20) Rivera-Hernandez, G.; Antunes-Ricardo, M.; Martínez-Morales, P.; L. Sanchez, M. Polyvinyl Alcohol Based-Drug Delivery Systems for Cancer Treatment. Int. J. Pharm. 2021, 600 (March), 120478. https://doi.org/10.1016/j.ijpharm.2021.120478.

(21) Feldman, D. Poly(Vinyl Alcohol) Recent Contributions to Engineering and Medicine. J. Compos. Sci. 2020, 4 (4), 1–11. https://doi.org/10.3390/jcs4040175.

(22) Yang, Q.; Guo, J.; Zhang, S.; Guan, F.; Yu, Y.; Yao, Q.; Zhang, X.; Xu, Y. PVA/PEO/PVA-g-APEG Nanofiber Membranes with Cytocompatibility and Anti-Cell Adhesion for Biomedical Applications. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 657 (November 2022). https://doi.org/10.1016/j.colsurfa.2022.130638.

(23) Mei, Y.; Runjun, S.; Yan, F.; Honghong, W.; Hao, D.; Chengkun, L. Preparation, Characterization and Kinetics Study of Chitosan/PVA Electrospun Nanofiber Membranes for the Adsorption of Dye from Water. J. Polym. Eng. 2019, 39 (5), 459–471. https://doi.org/10.1515/polyeng-2018-0275.

(24) Januariyasa, I. K.; Ana, I. D.; Yusuf, Y. Nanofibrous Poly(Vinyl Alcohol)/Chitosan Contained Carbonated Hydroxyapatite Nanoparticles Scaffold for Bone Tissue Engineering. Mater. Sci. Eng. C 2020, 107, 110347. https://doi.org/10.1016/j.msec.2019.110347.

(25) Avcu, E.; Baştan, F. E.; Abdullah, H. Z.; Rehman, M. A. U.; Avcu, Y. Y.; Boccaccini, A. R.; Ba, F. E.; Abdullah, H. Z. Electrophoretic Deposition of Chitosan-Based Composite Coatings for Biomedical Applications: A Review. Prog. Mater. Sci. 2019, 103 (March 2018), 69–108. https://doi.org/10.1016/j.pmatsci.2019.01.001.

(26) Liu, B.; Zhang, J.; Guo, H. Research Progress of Polyvinyl Alcohol Water-Resistant Film Materials. Membranes (Basel). 2022, 12, 347. https://doi.org/doi.org/10.3390/membranes12030347.

(27) Bistolfi, A.; Massazza, G.; Verné, E.; Massè, A.; Deledda, D.; Ferraris, S.; Miola, M.; Galetto, F.; Crova, M. Antibiotic-Loaded Cement in Orthopedic Surgery: A Review. ISRN Orthop. 2011, 2011, 1–8. https://doi.org/10.5402/2011/290851.

(28) Haney, V.; Maman, S.; Prozesky, J.; Bezinover, D.; Karamchandani, K. Improving Intraoperative Administration of Surgical Antimicrobial Prophylaxis: A Quality Improvement Report. BMJ open Qual. 2020, 9 (3), 1–6. https://doi.org/10.1136/bmjoq-2020-001042.

(29) Wouthuyzen-Bakker, M.; Löwik, C. A. M.; Knobben, B. A. S.; Zijlstra, W. P.; Ploegmakers, J. J. W.; Mithoe, G.; Al Moujahid, A.; Kampinga, G. A.; Jutte, P. C. Use of Gentamicin-Impregnated Beads or Sponges in the Treatment of Early Acute Periprosthetic Joint Infection: A Propensity Score Analysis. J. Antimicrob. Chemother. 2018, 73 (12), 3454–3459. https://doi.org/10.1093/jac/dky354.

(30) Vugt, T. A. G. van; Arts, J. J.; Geurts, J. A. P. Antibiotic-Loaded Polymethylmethacrylate Beads and Spacers in Treatment of Orthopedic Infections and the Role of Biofilm Formation. Front. Microbiol. 2019, 10 (July), 1–11. https://doi.org/10.3389/fmicb.2019.01626.

(31) Metsemakers, W. J.; Fragomen, A. T.; Moriarty, T. F.; Morgenstern, M.; Egol, K. A.; Zalavras, C.; Obremskey, W. T.; Raschke, M.; McNally, M. A. Evidence-Based Recommendations for Local Antimicrobial Strategies and Dead Space Management in Fracture-Related Infection. J. Orthop. Trauma 2020, 34 (1), 18–29. https://doi.org/10.1097/BOT.0000000000001615.

(32) Fang, C.; Wong, T. M.; Lau, T. W.; To, K. K. W.; Wong, S. S. Y.; Leung, F. Infection after Fracture Osteosynthesis - Part I: Pathogenesis, Diagnosis and Classification. J. Orthop. Surg. 2017, 25 (1), 1–13. https://doi.org/10.1177/2309499017692712.

(33) Steinmetz, S.; Wernly, D.; Moerenhout, K.; Trampuz, A.; Borens, O. Infection after Fracture Fixation. EFORT Open Rev. 2019, 4 (JULY), 145–152. https://doi.org/10.1302/2058-5241.4.180093.

(34) Tiwari, A.; Sharma, P.; Vishwamitra, B.; Singh, G. Review on Surface Treatment for Implant Infection via Gentamicin and Antibiotic Releasing Coatings. Coatings 2021, 11 (8). https://doi.org/10.3390/coatings11081006.

(35) Thompson, K.; Petkov, S.; Zeiter, S.; Sprecher, C. M.; Geoff Richards, R.; Fintan Moriarty, T.; Eijer, H. Intraoperative Loading of Calcium Phosphate-Coated Implants with Gentamicin Prevents Experimental Staphylococcus Aureus Infection in Vivo. PLoS One 2019, 14 (2). https://doi.org/10.1371/journal.pone.0210402.

(36) Teller, M.; Gopp, O.; Neumann, H. G.; Kühn, K. D. Release of Gentamicin from Bone Regenerative Materials: An in Vitro Study. J. Biomed. Mater. Res. - Part B Appl. Biomater. 2007, 81 (1), 23–29. https://doi.org/10.1002/jbm.b.30631.

(37) Neut, D.; Dijkstra, R. J. B.; Thompson, J. I.; Kavanagh, C.; van der Mei, H. C.; Busscher, H. J. A Biodegradable Gentamicin-Hydroxyapatite-Coating for Infection Prophylaxis in Cementless Hip Prostheses. Eur. Cells Mater. 2015, 29, 42–56. https://doi.org/10.22203/eCM.v029a04.

(38) Nichol, T.; Callaghan, J.; Townsend, R.; Stockley, I.; Hatton, P. V.; Le Maitre, C.; Smith, T. J.; Akid, R. The Antimicrobial Activity and Biocompatibility of a Controlled Gentamicin-Releasing Single-Layer Sol-Gel Coating on Hydroxyapatite-Coated Titanium. Bone Jt. J. 2021, 103 B (3), 522–529. https://doi.org/10.1302/0301-620X.103B3.BJJ-2020-0347.R1.

(39) Tiri, B.; Bruzzone, P.; Priante, G.; Sensi, E.; Costantini, M.; Vernelli, C.; Assunta Martella, L.; Francucci, M.; Andreani, P.; Mariottini, A.; Capotorti, A.; D’Andrea, V.; Francisci, D.; Cirocchi, R.; Cappanera, S. Impact of Antimicrobial Stewardship Interventions on Appropriateness of Surgical Antibiotic Prophylaxis: How to Improve. Antibiotics 2020, 9 (4). https://doi.org/10.3390/antibiotics9040168.

(40) Purba, A. K. R.; Setiawan, D.; Bathoorn, E.; Postma, M. J.; Dik, J. W. H.; Friedrich, A. W. Prevention of Surgical Site Infections: A Systematic Review of Cost Analyses in the Use of Prophylactic Antibiotics. Front. Pharmacol. 2018, 9 (JUL). https://doi.org/10.3389/fphar.2018.00776.

(41) Rahighi, R.; Panahi, M.; Akhavan, O.; Mansoorianfar, M. Pressure-Engineered Electrophoretic Deposition for Gentamicin Loading within Osteoblast-Specific Cellulose Nanofiber Scaffolds. Mater. Chem. Phys. 2021, 272 (May), 125018. https://doi.org/10.1016/j.matchemphys.2021.125018.

(42) Stevanović, M.; Djošić, M.; Janković, A.; Kojić, V.; Stojanović, J.; Grujić, S.; Bujagić, I. M.; Rhee, K. Y.; Mišković-Stanković, V. The Chitosan-Based Bioactive Composite Coating on Titanium. J. Mater. Res. Technol. 2021, 15, 4461–4474. https://doi.org/10.1016/j.jmrt.2021.10.072.

(43) Stevanović, M.; Djošić, M.; Janković, A.; Kojić, V.; Vukašinović-Sekulić, M.; Stojanović, J.; Odović, J.; Crevar Sakač, M.; Kyong Yop, R.; Mišković-Stanković, V. Antibacterial Graphene-Based Hydroxyapatite/Chitosan Coating with Gentamicin for Potential Applications in Bone Tissue Engineering. J. Biomed. Mater. Res. - Part A 2020, 1–15. https://doi.org/10.1002/jbm.a.36974.

(44) Stevanović, M.; Djošić, M.; Janković, A.; Nešović, K.; Kojić, V.; Stojanović, J.; Grujić, S.; Matić Bujagić, I.; Rhee, K. Y.; Mišković-Stanković, V. Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate. ACS Omega 2020, 5, 15433−15445. https://doi.org/10.1021/acsomega.0c01583.

(45) Djošić, M.; Janković, A.; Mišković-Stanković, V. Electrophoretic Deposition of Biocompatible and Bioactive Hydroxyapatite-Based Coatings on Titanium. Materials (Basel). 2021, 14, 5391. https://doi.org/https://doi.org/10.3390/ma14185391.

(46) Bonetti, L.; Caprioglio, A.; Bono, N.; Altomare, L.; Candiani, G. Mucoadhesive chitosan–methylcellulose oral patches for the treatment of local mouth bacterial infections. Biomater. Sci. 2023,11, 2699–2710. https://doi.org/10.1039/d2bm01540d.

(47) Rehman, M. A. U.; Batool, S. A. Development of Sustainable Antibacterial Coatings Based on Electrophoretic Deposition of Multilayers: Gentamicin-Loaded Chitosan/Gelatin/Bioactive Glass Deposition on PEEK/Bioactive Glass Layer. Int. J. Adv. Manuf. Technol. 2022, 120 (5–6), 3885–3900. https://doi.org/10.1007/s00170-022-09024-3.

(48) Aydemir, T.; Pastore, J. I.; Jimenez-Pique, E.; Roa, J. J.; Boccaccini, A. R.; Ballarre, J. Morphological and Mechanical Characterization of Chitosan/Gelatin/Silica-Gentamicin/Bioactive Glass Coatings on Orthopaedic Metallic Implant Materials. Thin Solid Films 2021, 732 (May), 138780. https://doi.org/10.1016/j.tsf.2021.138780.

(49) Stevanović, M.; Đošić, M.; Janković, A.; Kojić, V.; Vukašinović-Sekulić, M.; Stojanović, J.; Odović, J.; Crevar Sakač, M.; Rhee, K. Y.; Mišković-Stanković, V. Gentamicin-Loaded Bioactive Hydroxyapatite/Chitosan Composite Coating Electrodeposited on Titanium. ACS Biomater. Sci. Eng. 2018, 4 (12), 3994–4007. https://doi.org/10.1021/acsbiomaterials.8b00859.

(50) Aydemir, T.; Liverani, L.; Pastore, J. I.; Ceré, S. M.; Goldmann, W. H.; Boccaccini, A. R.; Ballarre, J. Functional Behavior of Chitosan/Gelatin/Silica-Gentamicin Coatings by Electrophoretic Deposition on Surgical Grade Stainless Steel. Mater. Sci. Eng. C 2020, 115, 111062. https://doi.org/10.1016/j.msec.2020.111062.

(51) Djošić, M.; Janković, A.; Stevanović, M.; Stojanović, J.; Vukašinović-Sekulić, M.; Kojić, V.; Mišković-Stanković, V. Hydroxyapatite/Poly(Vinyl Alcohol)/Chitosan Coating with Gentamicin for Orthopedic Implants. Mater. Chem. Phys. 2023, 303, 127766. https://doi.org/10.1016/j.matchemphys.2023.127766.

(52) Murdan, S.; Kerai, L.; Hossin, B. To What Extent Do in Vitro Tests Correctly Predict the in Vivo Residence of Nail Lacquers on the Nail Plate? J. Drug Deliv. Sci. Technol. 2015, 25 (February), 23–28. https://doi.org/10.1016/j.jddst.2014.11.002.

(53) Duta, L.; Popescu, A. C. Current Status on Pulsed Laser Deposition of Coatings from Animal-Origin Calcium Phosphate Sources. Coatings 2019, 9, 335. https://doi.org/10.3390/coatings9050335.

(54) Igeta, K.; Kuwamura, Y.; Horiuchi, N.; Nozaki, K.; Shiraishi, D.; Aizawa, M.; Hashimoto, K.; Yamashita, K.; Nagai, A. Morphological and Functional Changes in RAW264 Macrophage-like Cells in Response to a Hydrated Layer of Carbonate-Substituted Hydroxyapatite. J. Biomed. Mater. Res. Part A 2017, 105, 1063–1070. https://doi.org/10.1111/pce.14045.

(55) Pishbin, F.; Mouriño, V.; Flor, S.; Kreppel, S.; Salih, V.; Ryan, M. P.; Boccaccini, A. R. Electrophoretic Deposition of Gentamicin-Loaded Bioactive Glass/Chitosan Composite Coatings for Orthopaedic Implants. ACS Appl. Mater. Interfaces 2014, 6 (11), 8796–8806. https://doi.org/10.1021/am5014166.

(56) Guo, X.; Wu, Y.; Yan, N. In Situ Micro-FTIR Observation of Molecular Association of Adsorbed Water with Heat-Treated Wood. Wood Sci. Technol. 2018, 52 (4), 971–985. https://doi.org/10.1007/s00226-018-1020-3.

(57) Ren, F.; Ding, Y.; Leng, Y. Infrared Spectroscopic Characterization of Carbonated Apatite: A Combined Experimental and Computational Study. J. Biomed. Mater. Res. - Part A 2014, 102 (2), 496–505. https://doi.org/10.1002/jbm.a.34720.

(58) Solodyankina, A.; Nikolaev, A.; Frank-Kamenetskaya, O.; Golovanova, O. Synthesis and Characterization of Nanocrystalline Apatites from Solution Modeling Human Blood. J. Mol. Struct. 2016, 1119, 484–489. https://doi.org/10.1016/j.molstruc.2016.04.080.

(59) Barinov, S. M.; Rau, J. V.; Cesaro, S. N.; Ďurišin, J.; Fadeeva, I. V.; Ferro, D.; Medvecky, L.; Trionfetti, G. Carbonate Release from Carbonated Hydroxyapatite in the Wide Temperature Rage. J. Mater. Sci. Mater. Med. 2006, 17 (7), 597–604. https://doi.org/10.1007/s10856-006-9221-y.

(60) Djošić, M. S.; Mitrić, M.; Mišković-Stanković, V. B. The Porosity and Roughness of Electrodeposited Calcium Phosphate Coatings in Simulated Body Fluid. J. Serb. Chem. Soc. 2015, 80 (2), 237–251. https://doi.org/10.2298/JSC140626098D.

(61) Shi, Y. Y.; Li, M.; Liu, Q.; Jia, Z. J.; Xu, X. C.; Cheng, Y.; Zheng, Y. F. Electrophoretic Deposition of Graphene Oxide Reinforced Chitosan–Hydroxyapatite Nanocomposite Coatings on Ti Substrate. J. Mater. Sci. Mater. Med. 2016, 27 (3), 1–13. https://doi.org/10.1007/s10856-015-5634-9.

(62) Macha, I. J.; Cazalbou, S.; Ben-Nissan, B.; Harvey, K. L.; Milthorpe, B. Marine Structure Derived Calcium Phosphate-Polymer Biocomposites for Local Antibiotic Delivery. Mar. Drugs 2015, 13 (1), 666–680. https://doi.org/10.3390/md13010666.

(63) Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O. C. Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev. 2016, 116 (4), 2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346.Degradable.

(64) Bhattacharjee, B. N.; Mishra, V. K.; Rai, S. B.; Parkash, O.; Kumar, D. Structure of Apatite Nanoparticles Derived from Marine Animal (Crab) Shells: An Environment-Friendly and Cost-Effective Novel Approach to Recycle Seafood Waste. ACS Omega 2019, 4 (7), 12753–12758. https://doi.org/10.1021/acsomega.9b00134.

(65) Madupalli, H.; Pavan, B.; Tecklenburg, M. M. J. Carbonate Substitution in the Mineral Component of Bone: Discriminating the Structural Changes, Simultaneously Imposed by Carbonate in A and B Sites of Apatite. J. Solid State Chem. 2017, 255 (May), 27–35. https://doi.org/10.1016/j.jssc.2017.07.025.

(66) Ritger, P. L.; Peppas, N. A. A Simple Equation for Description of Solute Release II. Fickian and Anomalous Release from Swellable Devices. J. Control. Release 1987, 5 (1), 37–42. https://doi.org/10.1016/0168-3659(87)90035-6.

(67) Papich, M. Antibiotic Drug Selection for Equine Bacterial Pathogens. Saunders Handb. Vet. Drugs 2016, 874. https://doi.org/10.1016/b978-0-323-24485-5.00041-3.

(68) Pankey, G. A.; Sabath, L. D. Clinical Relevance of Bacteriostatic versus Bactericidal Mechanisms of Action in the Treatment of Gram Positive Bacterial Infections. Clin. Infect. Dis. 2004, 38 (6), 864–870. https://doi.org/10.1086/381972.

Downloads

Published

2023-12-11 — Updated on 2023-12-24

Versions

How to Cite

Jaćimović, N., Djošić, M. ., Jankovic, A., Grujić, S. ., Matić Bujagić, I. ., Stojanović, J. ., Vukašinović-Sekulić, M., Kojić, V. ., & Mišković-Stanković, V. . (2023). Single-step, electrophoretically deposited hydroxyapatite/poly(vinyl alcohol)/chitosan/gentamicin coating for biomedical applications . Macedonian Journal of Chemistry and Chemical Engineering, 42(2). https://doi.org/10.20450/mjcce.2023.2775 (Original work published December 11, 2023)

Issue

Section

Materials Chemistry