Synthesis, physicochemical characterization and antibacterial activity of novel (benzoylamino)methyl derivatives of quinolones
DOI:
https://doi.org/10.20450/mjcce.2016.919Keywords:
(benzoylamino)methyl, quinolones, structure, physicochemical properties, antimicrobial activityAbstract
Herein we report the synthesis of different derivatives of (fluoro)quinolones norfloxacin, ciprofloxacin and pipemidic acid, by incorporating (benzoylamino)methyl on the free nitrogen of the pyperazinyl moiety. The compounds were structurally characterized by 1D and 2D NMR, FTIR and high-resolution mass spectroscopy. In addition, their physicochemical properties were a matter of interest to be correlated with their structure and antimicrobial activity in vitro. Their antimicrobial activities were screened against Gram-positive, Gram-negative bacteria and C. albicans. Higher distribution coefficients and consequently lower water solubility were determined for all synthesized compounds than the ones of the corresponding leading compounds. Inconsequential correlations between the lipophilicity of the compounds and MIC were observed, suggesting that passive diffusion is not the only mechanism for their penetration into bacterial cells. Further studies are needed to determine how substitutions in the (fluoro)quinolone moiety affect the primary target(s), substrate behavior in respect to bacterial transporters and overall bioavailability.References
L. Pintilie Quinolones: synthesis and antibacterial activ¬ity. In: Antimicrobial Agents, Varaprasad B. (Eds), InTech, 2012, pp. 255–272.
A. Foroumadi, S. Emami, M. Mehni, M. H. Moshafi, A. Shafiee, Synthesis and antibacterial activity of N-[2-(5-bromothiophen-2-yl)-2-oxoethyl] and N-[2-(5-bromothio¬phen-2-yl)-2-oximinoethyl] derivatives of piperazinyl quinolones, Bioorg. Med. Chem. Lett, 20, 4536–4539 (2005). DOI: 10.1016/ j.bmcl.2005.07.005.
V. T. Andriole, The Quinolones: Past, Present and Future, Clin. Infect. Dis, 41, 113–119 (2005).
DOI: 10.1086/428051.
R. Davis, A. Markham, A. J. Balfour, Ciprofloxacin. An updated review of its pharmacology, therapeutic efficacy and tolerability, Drugs, 51, 1019–1074 (1996).
M. J. Nieto, F. L. Alovero, R. H. Manzo, M. R. Razzieri, Benzenesulfonamide analogs of fluoroquinolones. Antibacterial activity and QSAR studies, Eur. J. Med. Chem, 40, 361–369 (2005).
DOI:10.1016/j.ejmech.2004.11.008.
Y. L. Zhao, Y. L. Chen, J. Y. Sheu, L. I. Chen, T. C. Wang, C. C. Tzeng, Synthesis and antimycobacterial evaluation of certain fluoroquinolone derivatives, Bioorg. Med. Chem, 13, 3921–3926 (2005).
DOI: 10.1016/j.bmc.2005.04.005.
G. Zhao, M. J. Miller, S. Franzblau, B. Wan, U. Mollmann, Syntheses and studies of quinolone-cephalosporins as potential anti-tuberculosis agents, Bioorg. Med. Chem. Lett, 16, 5534–5537 (2006).
DOI: 10.1016/j.bmcl.2006.08.045.
G. E-D. A. A. Abuo-Rahma, H. A. Sarhan, F. G. Gad, Design, synthesis, antibacterial activity and physico-chemical parameters of novel N-4-piperazinyl deriv¬atives of norfloxacin, Bio. Med. Chem. 17, 3879–3886 (2009). DOI: 10.1016/j.bmc.2009.04.027.
S. Emami, E. Ghafouri, M. Ali, N. Samadi, H. Irannejad, A. Foroumadi, Mannich bases of 7-piperazinyl¬quinolones and kojic acid derivatives: synthesis, in vitro antibacterial activity and in silico study, Eur. J. Med. Chem, 2013, 68, 185–191 (2013).
DOI:10.1016/j.ejmech.2013.07.032.
D. Sriram, T. Bal Ratan, P. Yogeeswari, D. R. Redha, V. J. Nagraja, Evaluation of antimycobacterial and DNA gyrase inhibition of fluoroquinolone derivatives, J. Gen. Appl. Microbiol, 52, 195–200 (2006).
DOI: 10.2323/jgam.52.195.
S. N. Pandeya, D. Sriram, P. Yogeeswari, S. Ananthan, Antituberculous activity of norfloxacin Mannich bases with isatin derivatives, Chemother, 47, 266–269 (2001). DOI: 10.1159/000048533.
M. Kaul, L. Mark, Y. Zhang, A. K. Parhi, E. J. Lavoie, D. S. Pilch, An FtsZ-targeting prodrug with oral antistaphylococcal efficacy in vivo, Antimicrob. Agents. Chemother, 57, 5860–5869 (2013).
DOI: 10.1128/AAC.01016-13.
A. Buur, N. Mork, Prodrugs: Design and development. In: Textbook of Drug Design and Discovery, P. Krogsgaard-Larsen, K. Stromgaard, U. Madsen (Eds), CRC Press Taylor and Francis, 2010, pp. 135–151.
S. Bala, N. Sharma, A. Kajal, S. Kamboj, Design, synthesis, characterization and computational studies on benzamide substituted Mannich bases as novel, potential antibacterial agents, Sci. World J., 2014, Article ID 732141, 1–9 (2014). DOI:10.1155/2014/732141.
A. Doshi, S. G. Deshpande, In vivo pharmacokinetic studies of prodrugs of ibuprofen. Indian. J. Pharm. Sci, 69, 824–827 (2007). DOI: 10.4103/0250-474X.39444
D. Sriram, P. Yogeeswari, M. R. Kishore, Synthesis and anti-HIV activity of nevirapine prodrugs, Pharmazie 61, 895–897 (2006).
V. R. Guarino, V. J. Stella, Prodrugs of amides, imides and other NH-acidic compounds. In: Prodrugs, Challenges and Rewards, H. Maag, J. Tilley, V. Stella, R. Borchardt, M. Hageman, R. Oliyai (Eds), Springer, 2007, pp. 833–887.
P. M. A. Cabrera, D. H. Gonzalez, T. C. Fernandez, J. M. Pla-Delfina, M. S. Bermejo, A novel approach to determining physicochemical and absorption properties of 6-fluoroquinolone, Eur. J. Pharm. Biopharm, 53, 317–342 (2002). DOI: 10.1016/S0939-6411(02)00013-9.
P. Breznica-Selmani, K. Mladenovska, Z. Kavrakovski, B. Mikhova, G. Draeger, E. Popovski, [(3-Chloro-benzamido)methyl]triethylammonium chloride, Molbank 2, M851(2015). DOI:10.3390/M851.
C-L. Zhang, Y. Wang, Aqueous solubilities for ofloxacin, norfloxacin, lomefloxacin, ciprofloxacin, pefloxacin, and pipemidic acid from (293.15 to 323.15) K, J. Chem. Eng, 53, 1295-1297 (2008). DOI: 10.1021/je7007044.
E. Popovski, L. Klisarova, D. Vukić-Topić, Benzamido-methylation with (benzamidomethyl)triethylammonium chloride. 2. A simple method for benzamidomethylation of thiols, amines and carboxylic acids, Molecules, 5, 927–936 (2000). DOI: 10.3390/50700927.
E. Popovski, L. Klisarova, D. Vukić-Topić, Simple method for benzamidomethylation of phenols in water solution. Synth. Commun, 29, 3451–3458 (1999).
DOI: 10.1080/00397919908085975.
K. E. Brighty, T. D. Gootz, Chemistry and Mechanism of Action of the Quinolone Antibacterials. In: The Quinolones, V. T. Andriole (Eds), Academic Press, 2000, pp. 33–82.
K. Dua, M. V. Ramana, U. V. S. Sara, M. Himaja, A. Agrawal, V. Garg, K. Pabreja, Investigation of enhancement of solubility of norfloxacin beta-cyclodextrin in presence of acidic solubilizing additives, Curr. Drug Delivery, 4, 21–25 (2007).
DOI: 10.2174/156720107779314776.
A. I. Caҫo, F. Varanda, M. J. Pratas de Melo, A. M. A. Dias, R. Dohrn, I. M. Marrucho, Solubility of antibiotics in different solvents. Part II. Non-hydro¬chloride forms of tetracycline and ciprofloxacin, Ind. Eng. Chem. Res, 47, 8083–8089 (2008).
DOI: 10.1021/ie8003495.
M. E. Olivera, R. H. Manzo, H. E. Junginger, K. K. Midha, V. P. Shah, S. Stavchansky, J. B. Dressman, D. M. Barends, Biowaiver monographs for immediate release solid oral dosage forms: Ciprofloxacin hydrochloride, J. Pharm. Sci, 100, 22–33 (2011).
DOI: 10.1002/jps.22259.
Z. Qiang, C. Adams, Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics, Water. Res, 38, 2874–2890 (2004). DOI: 10.1016/j.watres.2004.03.017.
S. Babic, A. J. Horvat, D. Mutavdz-Pavlovic, Determi-nation of pKa values of active pharmaceutical ingredients, Trends Analyt. Chem, 2007, 26, 1043–1061 (2007).
DOI: 10.1016/j.trac.2007.09.004.
C. A. Kan, M. Petz, Residues of veterinary drugs in eggs and their distribution between yolk and white, J. Agric. Food Chem, 48, 6397–6403 (2000).
DOI: 10.1021/jf000145p.
H. R. Park, T. H. Kim, K. M. Bark, Physicochemical properties of quinolone antibiotics in various environments Eur. J. Med. Chem, 37, 443-460 (2002). DOI: 10.1016/S0223-5234(02)01361-2.
D. A. Bakhotmah, R. M. Abdul-Rahman, M. S. Makki, M. A. El-Zahabi, and M. Suliman, Synthesis, Physio-chemical Properties, Photochemical Probe, and Anti-microbial Effects of Novel Norfloxacin Analogues. ISRN Org. Chem, Article ID 184754, 1–11 (2011).
DOI: 10.5402/2011/184754.
J. Kujawski, M. Bernard, A. Janusz, W. Kuzma, Prediction of logP: ALOGPS application in medicinal chemistry education, J. Chem. Educ, 89, 64–67 (2012). DOI:10.1021/ed100444h.
J. Kujawski, H. Popielarska, A. Myka, B. Drbniska, M. Bernard, The logP parameter as a molecular descriptor in the computer-aided drug design–an overview. Meth. Sci. Technol, 18, 81–88 (2012).
DOI: 10.12921/cmst.2012.18.02.81-88.
L. R. Peterson, Quinolone molecular structure‐activity relationships: what we have learned about improving antimicrobial activity. Clin. Infect. Dis, 33, 180–186 (2001). DOI: 10.1086/321846.
B. Marquez, V. Pourcelle, C. M. Vallet, M. P. Mingeot-Leclercq, P. M. Tulkens, J. Marchand-Bruynaert, F. Van Bambeke, Pharmacological Characterization of 7-(4-(Piperazin-1-yl)) Ciprofloxacin Derivatives: Antibacterial Activity, Cellular Accumulation, Susceptibility to Efflux Transporters, and Intracellular Activity, Pharm. Res, 31, 1290–1301 (2014). DOI: 10.1007/s11095-013-1250-x.
F. L. Alovero, X. S. Pan, J. E. Morris, R. H. Manzo, L. M. Fisher, Engineering the specificity of antibacterial fluoroquinolones: benzenesulfonamide modifications at C-7 of ciprofloxacin change its primary target in Streptococcus pneumoniae from topoisomerase IV to gyrase, Antimicrob. Agents. and Chemother, 44, 320–325 (2000). DOI: 10.1128/AAC.44.2.320-325.2000.
R. Beyer, E. Pestova, J. J. Millichap, G. A. Noskin, L. Peterson, A convenient assay for estimating the possible involvement of efflux of fluoroquinolones by Streptococcus pneumoniae and Staphylococcus aureus: evidence for diminished moxifloxacin, sparfloxacin, and trovafloxacin efflux, Antimicrob. Agents Chemother, 44, 798-801 (2000). DOI: 10.1128/AAC.44.3.798.
Gergely Völgyi, Gábor Vizserálek, Krisztina Takács-Novák, Alex Avdeef, Kin Y. Tam, Predicting the exposure and antibacterial activity of fluoroquinolones based on physicochemical properties, Eur. J. Pharm. Sci, 47, 21-27 (2012). DOI: 10.1016/j.ejps.2012.04.022.
T. Takenouchi, F. Tabata, Y. Iwata, H. Hanzawa, M. Sugawara, S. Ohya, Hydrophilicity of Quinolones Is Not an Exclusive Factor for Decreased Activity in efflux-mediated resistant mutants of Staphylococcus aureus, Antimicrob. Agents Chemother, 40, 1835–1842 (1996).
L. V. Piddock, M. M. Johnson, Accumulation of 10 fluo-roquinolones by wild-type or efflux mutant Streptococcus pneumoniae, Antimicrob. Agents Chemother, 46, 813–820 (2002). DOI: 10.1128/AAC.46.3.813-820.2002.
J. L. Vazquez, S. Merino, O. Domeinech, M. Berlanga, M. Vinas, M. T. Montero, J. Hernandez.-Borrell, Determination of the partition coefficients of a homol-ogous series of ciprofloxacin: influence of N-4 piperazinyl alkylation on antimicrobial activity, Int. J. Pharm, 220: 53–62 (2001).
DOI:10.1016/S0378-5173(01)00646-9.
A. Dalhoff, F. J. Schmitz, In vitro antibacterial activity and pharmacodynamics of new quinolones. Eur. J. Clin. Microbiol, 22, 203–221 (2003).
Downloads
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.