HPLC-DAD-ESI-MSn identification of phenolic compounds in cultivated strawberries from Macedonia


  • Marina Kajdžanoska Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje
  • Viktor Gjamovski Institute of Agriculture, Ss. Cyril and Methodius University, Skopje
  • Marina Stefova Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje




strawberries, HPLC-DAD-ESI-MSn, phenolic compounds


Strawberry fruits contain phenolic compounds that exhibit antioxidant, anticancer, antiatherosclerotic, antinflammatory and anti-neurodegenerative properties. High-performance liquid chromatography (HPLC) coupled to electrospray ionization mass spectrometric (ESI-MS) detection in the positive and negative ion mode has been used to identify the phenolic compounds in extracts from sixteen different strawberry cultivar fruits from Republic of Macedonia. Photodiode-array detection (DAD) has been used for screening of the different classes of phenolic compounds, whereas MS and MSn fragmentation data were employed for their structural characterization. The phenolic compounds identified were grouped as: ellagic acid and ellagic acid conjugates with sugars, ellagitannins, anthocyanins, flavonols, flavanols, and acylated sugars (feruloyl, caffeoyl and coumaroyl hexoses). Quercetin and kaempferol were the major flavonols found as quercetin 3-O-glucoside, quercetin 3-O-glucuronide, kaempferol 3-O-glucoside, kaempferol 3-O-glucoronide, kaempferol 3-O-malonylglucoside, kaempferol 3-O-acetylglucoside and kaempferol 3-O-coumaroylglucoside. Pelargonidin-3-O-glucoside was the most abundant anthocyanin in all strawberry extracts. Proanthocyanidins were also identified by MSn fragmentation as dimers, trimers and tetramers of (epi)catechin and (epi)afzelechin. This is the first assay of the phenolic profile of the strawberry cultivars in Macedonia, which can be further developed for characterization and evaluation of their quality with regards to their phenolic composition.


Scalbert, A., Johnson, I. T., Saltmarsh, M., Polyphenols:

antioxidants and beyond, Am. J. Clin. Nutr., 81,

(2005), 215S–217S.

Hollman, P. C., Evidence for health benefits of plant

phenols: Local or systemic effects? J. Sci. Food. Agric.,

, (2001), 842–852.

Graefe, E.U., Wittig, J., Mueler, S., Riethling, A. K.,

Uehleke, B., Drewelow, B., Pforte, H., Jacobasch, G.,

Derendorf, H., Veit, M., Pharmacokinetics and bioavailability

of quercetin glycosides in humans, J. Clin.

Pharmacol., 41, (2001), 492 – 499.

Aherne, S. A., O`Brien, N. M., Dietary flavonols:

Chemistry, food content, and metabolism, Nutrition,

, (2002), 75–81.

Kähkönen, M. P., Hopia, A. I., Heinonen, M., Berry

phenolics and their antioxidant activity, J. Agric.

Food Chem., 49, (2001), 4076–4082.

Häkkinen, S. H., Kärenlampi, S. O., Heinonen, I. M.,

Mykkänen, H. M., Törrönen, A. R., Content of the

flavonols quercetin, myricetin, and kaempferol in

edible berries, J. Agric. Food Chem., 47, (1999),


Mattila, P., Kumpulainen, J., Determination of free

and total phenolic acids in plant-derived foods by

HPLC with diode-array detection, J. Agric. Food

Chem., 50, (2002), 3660–3667.

Gu, L., Kelm, M. A., Hammerstone, J. F., Beecher,

G., Holden, J., Haytowitz, D., Gebhardt, S., Prior,

R. L., Concentrations of proanthocyanidins in common

foods and estimations of normal consumption,

J. Nutr., 134, (2004), 613–617.

Häkkinen, S., Heinonen, M., Kärenlampi, S.,

Mykkänen, H., Ruuskanen, J., Törrönen, R., Screening

of selected flavonoids and phenolic acids in 19

berries, Food Res. Int., 32, (1999), 345–353.

Määttä, K. R., Kamal-Eldin, A., Törrönen, A. R.,

High- performance liquid chromatography (HPLC)

analysis of phenolic compounds in berries with diode

array and electrospray ionization mass spectrometric

(MS) detection: Ribes species, J. Agric. Food Chem.,

, (2003), 6736–6744.

Andersen, Ø. M., Fossen, T., Torskangerpoll, K.,

Fossen, A., Hauge, U., Anthocyanin from strawberry

(Fragaria ananassa) with the novel aglycone,

-carboxypyarnopelargonidin, Phytochemistry, 65,

(2004), 405–410.

Mullen, W., Yokota, T., Lean, M. E. J., Crozier, A.,

Analysis of ellagitannins and conjugates of ellagic

acid and quercetin in raspberry fruits by LC-MSn,

Phytochemistry, 64, (2003), 617–624.

Hukkanen, A. T., Kokko, H.I., Buchala, A. J., Mc-

Dougall, G. J., Stewart, D., Karenlampi, S. O., Karjalainen,

R. O., Benzothiadiazole induces the accumulation

of phenolics and improves resistance

to powdery mildew in strawberries, J. Agric. Food

Chem., 55, (2007), 1862–1870.

Swatsitang, P., Tucker, G., Robards, K., Jardine, D.,

Isolation and identification of phenolic compounds in

Citris sinensis. Anal. Chim. Acta, 417, (2000), 231.

Le Roux, E., Doco, T., Sarni-Manchado, P., Lozano,

Y., Cheynier, V., A type proanthocyanidins from pericarp

of Litchi chinensis, Phytochemistry, 48, (1998),


Nawwar, M. A. M., Marzouk, M. S., Nigge, W.,

Linscheid, M., High-performance liquid chromatographic/

electrospray ionization mass spectrometric

screening for polyphenolic compounds of Epilobium

hirsutum – The structure of the unique ellagitannin

epilobamide-A, J. Mass Spectrom, 32, (1997), 645–

Guyot, S., Doco, T., Souquet, J. M., Moutounet, M.,

Drilleau, J. F., Characterization of highly polymerized

procyanidins in cider apple (Malus sylvestris

var. Kermerrien) skin and pulp. Phytochemistry, 44,

(1997), 351–357.

Aaby, K., Ekeberg, D., Skrede, G., Characterization

of phenolic compounds in strawberry (Fragaria

× ananassa) fruits by different HPLC detectors and

contribution of individual compounds to total antioxidant

capacity, J. Agric. Food Chem., 55, (2007),


Simirgiotis, J. M., Theoduloz, C., Caligari, D. S. P.,

Schmeda-Hirschmann, G., Comparison of phenolic

composition and antioxidant properties of two native

Chilean and one domestic strawberry genotypes,

Food Chem., 113, (2009), 377–385.

Määttä, K. R., Kamal-Eldin, A., Törrönen, A. R.,

Identification and quantification of phenolic compounds

in berries of Fragaria and Rubus species, J.

Agric. Food Chem., 52, (2004), 6178–6187.

Seeram, P. N., Lee, R., Scheuller, S. H., Heber, D.,

Identification of phenolic compounds in strawberries

by liquid chromatography electrospray ionization

mass spectroscopy, Food Chem., 97, (2006), 1–11.

Wu, X., Prior, L. R., Systematic identification and

characterization of anthocyanins by HPLC-ESI-MS/

MS in common foods in the United States: Fruits and

Berries, J. Agric. Food Chem., 53, (2005), 2589–

Lopes-da-Silva, F., Escribano-Bailon, M. T., Perez

Alonso, J. J., Rivas-Gonzalo, J. C., Santos-Buelga,

C., Anthocyanin pigments in strawberry, Lebensm.

Wiss. Technol., 40, (2007), 374–382.

Lu, Y. R., Foo, L. Y., Unusual anthocyanin reaction

with acetone leading to pyranoanthocyanin formation,

Tetrahedron Lett., 42, (2001), 1371–1373.

Ryan, J. J., Flavonol glucosides of cultivated strawberry,

J. Food Sci., 36, (1971), 867–870.

Santos-Buelga, C., Garcia-Viguera, C., Tomás-Barberán,

F. A., On-line identification of flavonoids by

HPLC coupled to diode array detection, In: Methods in Polyphenol Analysis, Santos-Buelga, C., Williamson,

G., Eds., The Royal Society of Chemistry: Cambridge,

U.K., 2003, pp 92–127.

de Pascual-Teresa, S., Rivas-Gonzalo, J. C., Application

of LC-MS for the identification of polyphenols,

In Methods in Polyphenol Analysis, Santos-Buelga,

C., Williamson, G., Eds., The Royal Society of

Chemistry: Cambridge, U.K., 2003, pp 48–62.

Gu, L., Kelm, A. M., Hammerstone, F. J., Beecher,

G., Holden, J., Haytowitz, D., Prior, L. R., Screening

of foods containing proanthocyanidins and their

structural characterization using LC-MS/MS and thiolytic

degradation, J. Agric. Food Chem., 51, (2003),


Vasco, C., Riihinen, K., Ruales, J., Kamal-Eldin, A.,

Phenolic compounds in Rosaceae fruits from Ecuador,

J. Agric. Food Chem., 57, (2009), 1204–1212.

Hümmer, W., Schreier, P., Analysis of proanthocyanidins,

Mol. Nutr. Food Res., 52, (2008), 1381–1398.

Li, H. J., Deinzer, L. M., Tandem mass spectrometry

for sequencing proanthocyanidins, Anal. Chem., 79,

(2007), 1739–1748.

Hellström, J., Sinkkonen, J., Karonen, M., Mattila,

P., Isolation and structure elucidation of procyanidin

oligomers from Saskatoon berries (Amelanchier alnifolia),

J. Agric. Food Chem., 55, (2007), 157–164.

Zafrilla, P., Ferreres, F., Tomás-Barberán, F. A., Effect

of processing and storage on the antioxidant

ellagic acid derivatives and flavonoids of red raspberry

(Rubus idaeus) jams, J. Agric. Food Chem., 49,

(2001), 3651–3655.

Hanhineva, K., Rogachev, I., Kokko, H., Mintz-

Oron, S., Venger, I., Kärenlampi, S., Aharoni, A.,

Non-target analysis of spatial metabolite composition

in strawberry (Fragaria × ananassa) flowers, Phytochemistry,

, (2008), 2463–2481.

Mertz, C., Cheynier, V., Günata, Z., Brat, P., Analysis

of phenolic compounds in two blackberry species

(Rubus glaucus and Rubus adenotrichus) by Highperformance

liquid chromatography with diode array

detection and electrospray ion trap mass spectrometry,

J. Agric. Food Chem., 55, (2007), 8616–8624.




How to Cite

Kajdžanoska, M., Gjamovski, V., & Stefova, M. (2010). HPLC-DAD-ESI-MSn identification of phenolic compounds in cultivated strawberries from Macedonia. Macedonian Journal of Chemistry and Chemical Engineering, 29(2), 181–194. https://doi.org/10.20450/mjcce.2010.165



Natural Products

Most read articles by the same author(s)

> >>