Atomic absorption spectrometry in wine analysis

Authors

  • Trajče Stafilov Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril & Methodius University, Skopje
  • Irina Karadjova Faculty of Chemistry, University of Sofia, Sofia

DOI:

https://doi.org/10.20450/mjcce.2009.218

Keywords:

wine, trace elements, determination, speciation, AAS

Abstract

This article reviews methods for the determination and identification of trace elements in wine by using atomic absorption spectrometry (AAS). Wine is one of the most widely consumed beverages and strict analytical control of trace elements content is required during the whole process of wine production from grape to the final product. Levels of trace elements in wine are important from both points of view: organoleptic – Fe, Cu, Mn and Zn concentrations are directly related to the destabilization and oxidative evolution of wines, and toxicological – toxic elements content should be under the allowable limit, wine identification. The identification of metals in wine is subject of increasing interest since complexation may reduce their toxicity and bioavailability. AAS is one of widely used methods for routine analytical control of wine quality recommended by the International Organization of Vine and Wine. Two main approaches – preliminary sample digestion and direct instrumental measurement combined with AAS for trace element determination in wines are reviewed and discussed. Procedures for various sample pretreatments, for trace element separation and preconcentration are presented. Advances in metal identification studies in wines based on AAS are presented.

References

B. W. Zoecklein, K. C. Fugelsang, B. H. Gump, P. S. Nury, Wine Analysis and Production, Chapman & Hall, New York, 1994.

C. Minoia, E. Sabbioni, A. Ronchi, A. Gatti, R. Pietra, A. Nicolotti, S. Fortaner, C. Balducci, A. Fonte, C. Traceelement reference values in tissues from inhabitants of the European Community. 4. Influence of dietary factors, Sci. Total Environ. 141, 181–195 (1994).

A. L. Klatsky, M. A. Armostrong, G. D. Friedman, Alcohol and mortality, Ann. Int. Med. 117, 646–654 (1992).

G. A. Pedersen, G. K. Mortensen, E. H. Larsen, Beverages as a source of toxic trace-element intake, Food Addit. Contam. 11, 351–363 (1994).

V. R. Angelova, A. S. Ivanov, D. M. Braikov, Heavy metals (Pb, Cu, Zn and Cd) in the system soil - grapevine – grape, J. Sci. Food Agric. 79, 713–721 (1999).

V. Orescanin, A. Katunar, A. Kutle, V. Valkovic, Heavy metals in soil, grape, and wine, J. Trace Microprobe Tech. 21, 171–180 (2003).

D. E. Mackenzie, A. G. Christy, The role of soil chemistry in wine grape quality and sustainable soil management in vineyards, Water Sci. Technol. 51, 27–37 (2005).

J. Garrido, B. Ayestaran, P. Fraile, C. Ancin, Influence of prefermentation clarification on heavy metal lability in Garnacha must and rose wine using differential pulse anodic stripping voltammetry, J. Agric. Food Chem. 45, 2843–2848 (1997).

M. A. Amerine, C. S. Ough, Wine and Must Analysis, Wiley, New York, 1974.

C. Reilly, Metal Contamination of Food, Applied Science Publishers, London, 1980.

G. Nicolini, R. Larcher, P. Pangrazzi, L. Bontempo, Changes in the contents of micro- and trace-elements in wine due to winemaking treatments, Vitis, 43, 41–45 (2004).

H. Eschnauer, Trace elements in must and wine - Primary and secondary contents, Am. J. Enol. Viticult. 33, 226–230 (1982).

Hr. Hellmuth, E. Fischer, A. Rapp, On the behavior of trace-elements and radio-nuclides in grape must during fermentation and wine cultivation, Deut. Lebensm.- Rundsch. 81, 171–176 (1985).

R. S. Jackson, Wine Science, Principle and Application, Academic Press, San Diego, 1994.

C. S. Stockley, L. H. Smith, K. G. Tiller, B. L. Gulson, C. D. Osborn, T. H. Lee, Lead in wine: a case study on two varieties at two wineries in South Australia, Aust. J. Grape Wine Res. 9, 47–55 (2003).

A. Kaufmann, Lead in wine, Food Addit. Contam. 15, 437–445 (1998).

P. L. Teissedre, M. T. Cabanis, F. Daumas, J. C. Cabanis, Evolution of cadmium content during making of Cotes-Du-Rhone wines and other wines from the Rhone Valley, Sci. Aliment. 14, 741–749 (1994).

Z. Murányi, Z. Kovács, Statistical evaluation of aroma and metal content in Tokay wines, Microchem. J. 67, 91–96 (2000).

H. P. V. Rupasinghe, S. Clegg, Total antioxidant capacity, total phenolic content, mineral elements, and histamine concentrations in wines of different fruit sources, J. Food Compos. Anal. 20, 133–137 (2007).

F. M. Al Nasir, A. G. Jiries, M. I. Batarseh, F. Beese, Pesticides and trace metals residue in grape and home made wine in Jordan, Environ. Monit. Assess. 66, 253– 263 (2001).

M. A. Garcia-Esparza, E. Capri, P. Pirzadeh, Trevisan, M. Copper content of grape and wine from Italian farms, Food Addit. Contam. 23, 274–280 (2006).

J. Cacho, J. E. Castells, A. Esteban, B. Laguna, N. Sagrista, Iron, copper, and manganese influence on wine oxidation, Am. J. Enol. Viticult. 46, 380–384 (1995).

S. E. Allen, H. M. Grimshaw, J. A. Parkinson, C. Quarmbay, Chemical Analysis of Ecological Materials, Blackwell, Oxford, 1989, pp. 84–88.

P. L. Teissedre, M. T. Cabanis, J. C. Cabanis, Comparison of 2 mineralization methods for determination of lead by electrothermal atomic-absorption spectrometry - Application to soils, vine-leaves, grapes, musts, rapes and lees samples, Analusis, 21, 249–254 (1993).

P. Kment, M. Mihaljevic, V. Ettler, O. Sebek, L. Strnad, L. Rohlova, Differentiation of Czech wines using multielement composition – A comparison with vineyard soil, Food Chem. 91, 157–165 (2005).

S. N. F. Bruno, R. C. Campos, A. J. Curtius, Determination of lead and arsenic in wines by electrothermal atomic-absorption spectrometry, J. Anal. At. Spectrom. 9, 341–344 (1994).

J. Cvetkovic, S. Arpadjan, I. Karadjova, T. Stafilov, On the problems of the ETAAS determination of arsenic in wine, Ann. Univ. Sofia, Fac. Chim. 96, 173–178 (2004).

K. Tašev, I. Karadjova, T. Stafilov, Determination of inorganic and total arsenic in wines by hydride generation atomic absorption spectrometry, Microchim. Acta, 149, 55–60 (2005).

R. Lara, S. Cerutti, J. A. Salonia, R. A. Olsina, L. D. Martinez, Trace element determination of Argentine wines using ETAAS and USN-ICP-OES, Food Chem. Toxicol. 43, 293–297 (2005).

V. A. Lemos, M. de la Guardia, S. L. C. Ferreira, An on-line system for preconcentration and determination of lead in wine samples by FAAS, Talanta, 58, 475–480 (2002).

B. Sebecic, D. Pavisic-Strache, I. Vedrina-Dragojevic, Trace elements in wine from Croatia, Deut. Lebensm.- Rundsch. 94, 341–344 (1998).

J. Cacho, J. E. Castells, Determination of mercury in wine by flameless atomic-absorption spectrophotometry, At. Spectrosc. 10, 85–88 (1989).

J. L. Capelo, S. Catarino, A. S. Curvelo-Garcia, M. Vaiao, Focused ultrasound versus microwave digestion for the determination of lead in must by electrothermalatomic absorption spectrometry, J. AOAC Int. 88, 585– 591 (2005).

P. L. Teissedre, R. Lobinski, M. T. Cabanis, J. Szpunar- Lobinska, J. C. Cabanis, F. C. Adams, On the origin of organolead compounds in wine, Sci. Total Environ. 153, 247–252 (1994).

F. F. Lopez, C. Cabrera, M. L. Lorenzo, M. C. Lopez, Aluminium levels in wine, beer and other alcoholic beverages consumed in Spain, Sci. Total Environ. 220, 1–9 (1998).

G. P. G. Freschi, C. S. Dakuzaku, M. de Moraes, J. A. Nóbrega, J. A. Gomes Neto, Simultaneous determination of cadmium and lead in wine by electrothermal atomic absorption spectrometry, Spectrochim. Acta, Part B, 56, 1987–1993 (2001).

C. Mena, C. Cabrera, M. L. Lorenzo, M. C. López, Cadmium levels in wine, beer and other alcoholic beverages: possible sources of contamination, Sci. Total Environ. 181, 201–208 (1996).

S. Galani-Nikolakaki, N. Kallithrakas-Kontos, A. A. Katsanos, Trace element analysis of Cretan wines and wine products, Sci. Total Environ. 285, 155–163 (2002).

S. Frias, C. Diaz, j. E. Conde, J. P. P. Trujillo, Selenium and mercury concentrations in sweet and dry bottled wines from the Canary Islands. Spain, Food Addit. Contam. 20, 237–240 (2003).

M. Kim, Determination of lead and cadmium in wines by graphite furnace atomic absorption spectrometry, Food Addit. Contam. 21, 154–157 (2004).

Y. Bakircioglu, S. R. Segade, E. R. Yourd, J. F. Tyson, Evaluation of Pb-Spec

[R] for flow-injection solidphase extraction preconcentration for the determination of trace lead in water and wine by flame atomic absorption spectrometry, Anal. Chim. Acta, 485, 9–18 (2003).

W. Chuachuad, J. F. Tyson, Determination of cadmium by flow injection atomic absorption spectrometry with cold vapor generation by a tetrahydroborate-form anionexchanger, J. Anal. At. Spectrom. 20, 273–281 (2005).

W. Chuachuad, J. F. Tyson, Determination of lead by flow injection hydride generation atomic absorption spectrometry with tetrahydroborate immobilized on an anion-exchange resin, J. Anal. At. Spectrom. 20, 282– 288 (2005).

M. Tuzen, M. Soylak, L. Elci, M. Dogan, Column solid phase extraction of copper, iron, and zinc ions at trace levels in environmental samples on amberlite XAD-7 for their flame atomic absorption spectrometric determinations, Anal. Lett. 37, 1185–1201 (2004).

M. Tuzen, M. Soylak, Column system using diaion HP- 2MG for determination of some metal ions by flame atomic absorption spectrometry, Anal. Chim. Acta, 504, 325–334 (2004).

M. Tuzen, M. Soylak, L. Elci, Multi-element preconcentration of heavy metal ions by solid phase extraction on Chromosorb 108, Anal. Chim. Acta, 548, 101– 108 (2005).

C. Cabrera, Y. Madrid, C. Camara, Determination of lead in wine, other beverages and fruit slurries by flowinjection hydride generation atomic-absorption spectrometry with online microwave digestion, J. Anal. At. Spectrom. 9, 1423–1426 (1994).

P. L. Buldini, S. Cavalli, J. L. Sharma, Determination of transition metals in wine by IC, DPASV-DPCSV, and ZGFAAS coupled with UV photolysis, J. Agric. Food Chem. 47, 1993–1998 (1999).

T. Wierzbicki, K. Pyrzynska, Determination of vanadium content in wine by GF AAS, Chem. Anal.-Warsaw, 47, 449–455 (2002).

C. Baluja-Santos, A. Gonzalez-Portal, Application of hydride generation to atomic-absorption spectrometric analysis of wines and beverages: A review, Talanta, 39, 329–339 (1992).

J. Sanz, P. Basterra, J. Galban, J. R. Castillo, Some observations on the use of a hydride generation flameheated silica tube atomic-absorption spectrophotometric system for the determination of lead in wine, Microchem. J. 40, 115–124 (1989).

C. M. Mena, C. Cabrera, M. L. Lorenzo, M. C. Lopez, Determination of lead contamination in Spanish wines and other alcoholic beverages by flow injection atomic absorption spectrometry, J. Agric. Food Chem. 45, 1812–1815 (1997).

Diaz, J. P.; Navarro, M.; Lopez, H.; Lopez, M. C. Determination of selenium levels in dairy products and drinks by hydride generation atomic absorption spectrometry: Correlation with daily dietary intake. Food Addit. Contam. 14, 109–114 (1997).

S. Frias, J. E. Conde, J. J. Rodríguez-Bencomo, F. García- Montelongo, J. P. Pérez-Trujillo, Classification of commercial wines from the Canary Islands (Spain) by chemometric techniques using metallic contents, Talanta, 59, 335–344 (2003).

W. Chuachuad, J. F. Tyson, Determination of cadmium by electrothermal atomic absorption spectrometry with flow injection chemical vapor generation from a tetrahydroborate form anion-exchanger and in-atomizer trapping, Can. J. Anal. Sci. Spectr. 49, 362–373 (2004).

J. L. Capelo, H. A. Pedro, A. M. Mota, Ozone treatment for mercury determination in white wines, Talanta, 61, 485–491 (2003).

J. Cvetković, T. Stafilov, D. Mihajlović, Nickel and strontium nitrates as modifiers for the determination of selenium in wine by Zeeman electrothermal atomic absorption spectrometry, Fresenius J. Anal. Chem. 370, 1077–1081 (2001).

B. T. Kildahl, W. Lund, Determination of arsenic and antimony in wine by electrothermal atomic absorption spectrometry, Fresenius J. Anal. Chem. 354, 93–96 (1996).

M. Llobat-Estelles, A. R. Mauri-Aucejo, R. Marin-Saez, Detection of bias errors in ETAAS determination of copper in beer and wine samples, Talanta, 68, 1640– 1647 (2006).

A. A. Almeida, M. L. Bastos, M. I. Cardoso, M. A. Ferreira, J. L. F. C. Lima, M. E. Soares, Determination of lead and aluminium in port wine by electrothermal atomic-absorption spectrometry, J. Anal. At. Spectrom. 7, 1281–1285 (1992).

A. A. Almeida, M. I. Cardoso, J. L. F. C. Lima, Improved determination of aluminium in port wine by electrothermal atomic absorption spectrometry using potassium dichromate chemical modification and endcapped graphite tubes, J. Anal. At. Spectrom. 12, 837– 840 (1997).

S. Catarino, A. S. Curvelo-Garcia, R. B. de Sousa, Determination of aluminium in wine by graphite furnace AAS: Validation of analytical method, At. Spectrosc. 23, 196–200 (2002).

M. Larroque, J. C. Cabanis, L. Vian, Determination of aluminium in wines by direct graphite-furnace atomicabsorption spectrometry, J. AOAC Int. 77, 463–466 (1994).

M. Seruga, J. Grgic, Z. Grgic, B. Seruga, Aluminium content of some Croatian wine, Deut. Lebensm.- Rundsch. 94, 336–340 (1998).

M. Aceto, O. Abollino, M. C. Bruzzoniti, E. Mentasti, C. Sarzanin, M. Malandrino, Determination of metals in wine with atomic spectroscopy (flame-AAS, GF-AAS and ICP-AES): A review, Food Addit. Contam. 19, 126–133 (2002).

I. Narin, M. Tuzen, M. Soylak, Aluminium determination in environmental samples by graphite furnace atomic absorption spectrometry after solid phase extraction on Amberlite XAD-1180/pyrocatechol violet chelating resin, Talanta, 63, 411–418 (2004).

M. T. Kelly, A. Blaise, Validation and evaluation of a high performance liquid chromatographic method for the determination of aluminium in wine, J. Chromatogr. A, 1134, 74–80 (2006).

M. E. Soares, M. L. Bastos, M. A. Ferreira, Quantification of Ag, Co, Si, and Zn in port wine by atomic absorption spectrometry, At. Spectrosc. 16, 256–260 (1995).

J. Jaganathan, A. L. Reisig, S. M. Dugar, Determination of cadmium in wines using graphite furnace atomic absorption spectrometry with Zeeman background correction, Microchem. J. 56, 221–228 (1997).

J. Cvetković, S. Arpadjan, I. Karadjova, T. Stafilov, Determination of cadmium in Macedonian wine by electrothermal atomic absorption spectrometry, Acta Pharm. 56, 69–77 (2006).

M. T. R. de Lima, M. T. Cabanis, L. Matos, G. Cassanas, M. T. Kelly, A. Blaise, Determination of lead and cadmium in vineyard soils, grapes and wines of the Azores, J. Int. Sci. Vigne Vin, 38, 163–170 (2004).

R. Tahvonen, Lead and cadmium in beverages consumed in Finland, Food Addit. Contam. 15, 446–450 (1998).

Huguet, M. E. R. Monitoring of Cd, Cr, Cu, Fe, Mn, Pb and Zn in fine Uruguayan wines by atomic absorption spectroscopy. At. Spectrosc. 25, 177–184 (2004).

J. Kristl, M. Veber, M. Slejkovec, The application of ETAAS to the determination of Cr, Pb and Cd in samples taken during different stages of the winemaking process, Anal. Bioanal. Chem. 373, 200–204 (2002).

M. Cocchi, G. Franchini, D. Manzini, M. Manfredini, A. Marchetti, A. Ulrici, A chemometric approach to the comparison of different sample treatments for metals determination by atomic absorption spectroscopy in aceto balsamico tradizionale di Modena, J. Agric. Food Chem. 52, 4047–4056 (2004).

C. Cabrera-Vique, P. L. Teissedre, M. T. Cabanis, J. C. Cabanis, Determination and levels of chromium in French wine and grapes by graphite furnace atomic absorption spectrometry, J. Agric. Food Chem. 45, 1808– 1811 (1997).

J. Cvetković, S. Arpadjan, I. Karadjova, T. Stafilov, Determination of chromium in Macedonian wine by electrothermal atomic absorption spectrometry, J. Inst. Sci. Techn. Balikesir University, 4, 80–84 (2002).

E. Lendinez, M. C. Lopez, C. Cabrera, M. L. Lorenzo, Determination of chromium in wine and other alcoholic beverages consumed in Spain by electrothermal atomic absorption spectrometry, J. AOAC Int. 81, 1043–1047 (1998).

A. A. Almeida, M. I. Cardoso, J. L. F. C. Lima, Determination of copper in port-wine and Madeira wine by electrothermal atomization, AAS. At. Spectrosc. 15, 73– 77 (1994).

P. Benítez, R. Castro, J. A. S. Pazo, C. G. Barroso, Influence of metallic content of fino sherry wine on its susceptibility to browning, Food Res. Int. 35, 785–791 (2002).

M. A. G. O. Azenha, M. T. S. D. Vasconcelos, Pb and Cu speciation and bioavailability in port wine, J. Agric. Food Chem. 48, 5740–5749 (2000).

M. A. G. O. Azenha, M. T. S. D. Vasconcelos, Assessment of the Pb and Cu in vitro availability in wines by means of speciation procedures, Food Chem. Toxicol. 38, 899–912 (2000).

P. Benitez, R. Castro, C. G. Barroso, Removal of iron, copper and manganese from white wines through ion exchange techniques. Effects on their organoleptic characteristics and susceptibility to browning, Anal. Chim. Acta, 458, 197–202 (2002).

S. Catarino, I. Pimentel, A. S. Curvelo-Garcia, Determination of copper in wine by ETAAS using conventional and fast thermal programs: Validation of analytical method, At. Spectrosc. 26, 73–78 (2005).

I. Karadjova, S. Arpadjan, J. Cvetković, T. Stafilov, Sensitive method for trace mercury determination in wines by using electrothermal atomic absorption spectrometry, Microchim. Acta, 147, 39–43 (2004).

J. Cvetković, S. Arpadjan, I. Karadjova, T. Stafilov, Determination of nickel in wine by electrothermal atomic absorption spectrometry, Ovidius Univ. Annals Chem. 16, 31–34 (2005).

P. L. Teissedre, C. C. Vique, M. T. Cabanis, J. C. Cabanis, Determination of nickel in French wines and grapes, Am. J. Enol. Viticult. 49, 205–210 (1998).

P. A. Brereton, P. Robb, C. M. Sargent, H. M. Crews, R. Wood, Determination of lead in wine by graphite furnace atomic absorption spectrophotometry: Interlaboratory study. J. AOAC Int. 80, 1287–1297 (1997).

K. G. Fernandes, M. de Moraes, J. A. G. Neto, J. A. Nobrega, P. V. Oliveira, Evaluation and application of bismuth as an internal standard for the determination of lead in wines by simultaneous electrothermal atomic absorption spectrometry, Analyst, 127, 157–162 (2002).

L. Jorhem, B. Sundstrom, Direct determination of lead in wine using graphite furnace, At. Spectrosc. 16, 265–265 (1995).

M. R. Matthews, P. J. Parsons, A simple method for the determination of lead in wine using Zeeman electrothermal atomization atomic-absorption spectrometry, At. Spectrosc. 14, 41–46 (1993).

W. R. Mindak, Determination of lead in table wines by graphite-furnace atomic-absorption spectrometry, J. AOAC Int. 77, 1023–1030 (1994).

K. Ndung'u, S. Hibdon, A. R. Flegal, Determination of lead in vinegar by ICP-MS and GFAAS: evaluation of different sample preparation procedures, Talanta, 64, 258–263 (2004).

Z. Y. Zuo, M. Zhang, Z. A. Sun, D. S. Wang, Determination of lead in grape wine by graphite furnace atomic absorption spectrometry with ammonium dihydric phosphate as modifier, Spectrosc. Spectr. Anal. 22, 859–861 (2002).

M. Tripkovic, M. Todorovic, I. Holclajtner-Antunovic, S. Razic, A. Kandic, D. Markovic, Spectrochemical determination of lead in wines, J. Serb. Chem. Soc. 65, 323–329 (2000).

C. Cabrera-Vique, P. L. Teissedre, M. T. Cabanis, J. C. Cabanis, Determination of platinum in wine by graphite furnace atomic absorption spectrometry, J. AOAC Int. 80, 57–62 (1997).

J. D. Cvetković, S. H. Arpadjan, I. B. Karadjova, T. Stafilov, Determination of selenium in wine by electrothermal atomic absorption spectrometry, Bulg. Chem. Commun. 34, 50–57 (2002).

J. Jaganathan, S. M. Dugar, Determination of selenium in wines using electrothermal atomic absorption spectrometry with Zeeman background correction, Am. J. Enol. Viticult. 49, 115–118 (1998).

J. Cvetković, S. Arpadjan, I. Karadjova, T. Stafilov, Determination of thallium in wine by electrothermal atomic absorption spectrometry after extraction preconcentration, Spectrochim. Acta, Part B, 57, 1101–1106 (2002).

P. L. Teissedre, M. Krosniak, K. Portet, F. Gasc, A. L. Waterhouse, J. J. Serrano, J. C. Cabanis, G. Cros, Vanadium levels in French and Californian wines: influence on vanadium dietary intake, Food Addit. Contam. 15, 585–591 (1998).

J. Cacho, V. Ferreira, C. Nerin, C. Determination of lead in wines by hydride generation atomic-absorption spectrometry, Analyst, 117, 31–33 (1992).

A. M. Wifladt, G. Wibetoe, W. Lund, Determination of antimony in wine by hydride generation graphite fur nace atomic absorption spectrometry, Fresenius J. Anal. Chem. 357, 92–96 (1997).

J. E. Conde, D. Estevez, J. J. Rodriguez-Bencomo, F. J. G. Montelongo, J. P. Perez-Trujillo, Characterization of bottled wines from the Tenerife Island (Spain) by their metal ion concentration. Ital. J. Food Sci. 14, 375–387 (2002).

A. M. Jodral-Segado, M. Navarro-Alarcón, H. L.-G. de la Serrana, M. C. López-Martínez, Magnesium and calcium contents in foods from SE Spain: influencing factors and estimation of daily dietary intakes. Sci. Total Environ. 312, 47–58 (2003).

M. T. De Lima, M. T. Kelly, M. T. Cabanis, G. Cassanas, L. Matos, J. Pinheiro, A. Blaise, Determination of iron, copper, manganese and zinc in the soils, grapes and wines of the Azores. J. Int. Sci. Vigne Vin, 38, 109–118 (2004).

R. A. S. Lapa, J. F. C. Lima, J. L. M. Santos, Determination of calcium, magnesium, sodium and potassium in wines by FIA using an automatic zone sampling system. Food Chem. 55, 397–402 (1996).

J. F. C. Lima, A. O. S. S. Rangel, Usefulness of a detector inlet overpressure and stream splitting in FIA systems to deal with food sample pre-treatment requireements. Application to wine analysis. Food Control, 2, 146–151 (1991).

I. B. Karadjova, L. Lampugnani, M. Onor, A. D'Ulivo, D. L. Tsalev, Continuous flow hydride generationatomic fluorescence spectrometric determination and speciation of arsenic in wine, Spectrochim. Acta, Part B, 60, 816–823 (2005).

M. Segura, Y. Madrid, C. Camara, Evaluation of atomic fluorescence and atomic absorption spectrometric techniques for the determination of arsenic in wine and beer by direct hydride generation sample introduction, J. Anal. At. Spectrom. 14, 131–135 (1999).

Y. Li, C. B. Zheng, Q. Ma, L. Wu, C. W. Hu, X. D. Hou, Sample matrix-assisted photo-induced chemical vapor generation: a reagent free green analytical method for ultrasensitive detection of mercury in wine or liquor samples, J. Anal. At. Spectrom. 21, 82–85 (2006).

European Economic Community, Official Methods of Analysis of Wine: 1990: Method 2676/90, Official Journal, 1990, L272, 1–192.

C. Cabrera-Vique, P. L. Teissedre, M. T. Cabanis, J. C. Cabanis, Manganese determination in grapes and wines from different regions of France, Am. J. Enol. Viticult. 51, 103–107 (2000).

K. Ohzeki, I. Nukatsuka, K. Ichimura, F. Kumagai, M. Kogawa, Preconcentration of nickel(II) in white wine using quinoxaline-2,3-dithiol and a finely divided anion- exchange resin for the determination by solid-phase spectrophotometry, Microchem. J. 49, 256–264 (1994).

M. L. Fernandez de-Cordova, A. Ruiz Medina, A. Molina Diaz, Solid phase spectrophotometric microdetermination of iron with ascorbic acid and ferrozine, Fresenius J. Anal. Chem. 357, 44–49 (1997).

D. G. Themelis, P. D. Tzanavaras, A. V. Trellopoulos, M. C. Sofoniou, Direct and selective flow-injection method for the simultaneous spectrophotometric determination of calcium and magnesium in red and white wines using online dilution based on "zone sampling", J. Agric. Food Chem. 49, 5152–5155 (2001).

T. I. M. S. Lopes, A. O. S. S. Rangel, R. P. Sartini, E. A. G. Zagatto, Spectrophotometric flow injection determination of lead in port wine using in-line ion-exchange concentration, Analyst, 121, 1047–1050 (1998).

Y. P. de Pena, B. Paredes, W. Rondon, M. Burguera, J. L. Burguera, C. Rondon, P. Carrero, T. Capote, Continuous flow system for lead determination by FAAS in spirituous beverages with solid phase extraction and online copper removal, Talanta, 64, 1351–1358 (2004).

Z. Šlejkovec, J. T. van Elteren, A. R. Byrne, Arsenic speciation using high performance liquid chromatoraphy separation and atomic fluorescence spectrometry detection – application to wine and urine samples, Acta Chim. Slov. 44, 225–235 (1997).

C. R. T. Tarley, S. L. C. Ferreira, M. A. Z. Arruda, Use of modified rice husks as a natural solid adsorbent of trace metals: characterisation and development of an online preconcentration system for cadmium and lead determination by FAAS, Microchem. J. 77, 163–175 (2004).

Z. Muranyi, L. Papp, “Enological” metal speciation analysis, Microchem. J. 60, 134–142 (1998).

I. Karadjova, B. Izgi, S. Gucer, Fractionation and speciation of Cu, Zn and Fe in wine samples by atomic absorption spectrometry, Spectrochim. Acta, Part B, 57, 581–590 (2002).

R. C. D. Costa, A. N. Araujo, Determination of Fe(III) and total Fe in wines by sequential injection analysis and flame atomic absorption spectrometry, Anal. Chim. Acta, 438, 227–233 (2001).

E. K. Paleologos, D. L. Giokas, S. M. Tzouwara- Karayanni, M. I. Karayannis, Micelle mediated methodology for the determination of free and bound iron in wines by flame atomic absorption spectrometry, Anal. Chim. Acta, 458, 241–248 (2002).

K. Tašev, I. Karadjova, S. Arpadjan, J. Cvetković, T. Stafilov, Liquid/liquid extraction and column solid phase extraction procedures for iron species determination in wines, Food Control, 17, 484–488 (2006).

A. B. Tawali, G. Schwedt, Combination of solid phase extraction and flame atomic absorption spectrometry for differentiated analysis of labile iron(II) and iron(III) species, Fresenius J. Anal. Chem. 357, 50–55 (1997).

Z. T. Zeng, R. A. Jewsbury, Fluorimetric determination of iron using 5-

-methoxyphenylazo]-8-

-toluenesulfonamido] quinoline, Analyst, 125, 1661–1665 (2000).

A. Cladera, E. Gomez, J. M. Estela, V. Cerda, Determination of iron by flow-injection based on the catalytic effect of the iron(III) ethylenediaminetetraacetic acid complex on the oxidation of hydroxylamine by dissolved- oxygen, Analyst, 116, 913–917 (1991).

G. Weber, Speciation of iron using HPLC with electrochemical and flame-AAS detection. Fresenius J. Anal. Chem. 340, 161–165 (1991).

C. Herce-Pagliai, I. Moreno, G. Gonzalez, M. Repetto, A, M. Camean, Determination of total arsenic, inorganic and organic arsenic species in wine, Food Addit. Contam. 19, 542–546 (2002).

A. J. McKinnon, G. R. Scollary, Size fractionation of metals in wine using ultrafiltration, Talanta, 44, 1649– 1658 (1997).

R. Ajlec, J. Stupar, Determination of iron species in wine by ion-exchange chromatography flame atomicabsorption spectrometry, Analyst, 114, 137–142 (1989).

K. Pyrzynska, Analytical methods for the determination of trace metals in wine, Crit. Rev. Anal. Chem. 34, 69– 83 (2004).

C. R. Quetel, S. M. Nelms, L. Van Nevel, I. Papadakis, P. D. P. Taylor. Certification of the lead mass fraction in wine for comparison 16 of the International Measurement Evaluation Programme, J. Anal. At. Spectrom. 16, 1091–1100 (2001).

Downloads

Published

2009-06-15

How to Cite

Stafilov, T., & Karadjova, I. (2009). Atomic absorption spectrometry in wine analysis. Macedonian Journal of Chemistry and Chemical Engineering, 28(1), 17–31. https://doi.org/10.20450/mjcce.2009.218

Issue

Section

Analytical Chemistry

Most read articles by the same author(s)

> >>