Micellar properties of cetyltrimethylammonium bromide in an acetonitrile–water mixture: Conductometric and fluorescence studies


  • Aleksandra Miroslav Janošević Ležaić Faculty of Pharmacy, University of Belgrade
  • Nataša Pejić Faculty of Pharmacy, University of Belgrade
  • Jelena Goronja Faculty of Pharmacy, University of Belgrade
  • Leposava Pavun Faculty of Pharmacy, University of Belgrade
  • Danijela Đikanović Faculty of Pharmacy, University of Belgrade
  • Anđelija Malenović Faculty of Pharmacy, University of Belgrade




acetonitrile/water mixtures, cetyltrimethylammonium bromide, conductometry, critical micellar concentration, steady-state fluorescence measurements


The effect of acetonitrile (ACN) on the micellization of a cationic surfactant, cetyltrimethylammonium bromide (CTAB), in aqueous solutions at different temperatures was studied. The critical micellar concentration (CMC) as well as the degree of counter ion dissociation (a) of CTAB in aqueous ACN mixtures (10-20 % v/v) at various temperatures (291.2-298.2 K) were determined by electrical conductivity measurements, while steady-state fluorescence measurements were used to determine several CMCs (for comparison) and a micellar aggregation number (Nagg) as well. At a fixed temperature, both an increase in CMC and a decrease in Nagg were observed for an increase in ACN in the solvent mixture. With a temperature increase, CMC values increased for 10 % (v/v) ACN, while for both 15 % and 20 % (v/v) ACN, CMC values were a minimum at T = 295.2 K with a temperature increase. In addition, some aspects related to the Krafft temperature behavior of CTAB in the examined micellar systems are discussed.


K. Holmberg, R. Laughlin, Surfactant science is grow-ing: Editorial overview, Curr. Opin. Colloid Interface Sci. 2, 453–455 (1997).

DOI: https://doi.org/10.1016/S1359-0294(97)80091-X

Z. Khan, M. A. Malik, S. A. AL-Thabaiti, A. Alshehri, F. Nabi, Micellization and thermodynamic properties of cationic surfactant cetyltrimethylammonium bro-mide in non-aqueous mixture of lauric acid, Int. J. Electrochem. Sci. 12, 4528–4542 (2017).

DOI: https://doi: 10.20964/2017.05.53

G. Kumar, M. S. Chauhan, Conductometric investiga-tions of surfactant behavior in aqueous polar aprotic organic additives, J. Mol. Liq. 249, 710–715 (2018).

DOI: https://doi.org/10.1016/j.molliq.2017.11.090.

L. L. Schramm, E. N. Stasiuk, D. G. Marangoni, Sur-factants and their applications, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 99, 3–48, (2003).

DOI: https://doi.org/10.1039/B208499F

M. J. Rosen, Surfactants and Interfacial Phenomena, Wiley Interscience, New York, 2004.

S. N. Blagojević, S. M. Blagojević, N. D. Pejić, Per-formance and efficiency of anionic dishwashing liq-uids with amphoteric and nonionic surfactants, J. Sur-factants Deterg. 19, 363–372 (2016).

DOI: https://doi.org/10.1007/s11743-015-1784-5

A. Domínguez, A. Fernández, N. González, E. Iglesi-as, L. Montenegro, Determination of critical micelle concentration of some surfactants by three techniques, J. Chem. Educ. 74, 1227–1231 (1997).

DOI: https://doi.org/10.1021/ed074p1227.

P. Hansson, B. Jönsson, C. Ström, O. Söderman, De-termination of micellar aggregation numbers in dilute surfactant systems with the fluorescence quenching method, J. Phys. Chem. B, 104, 3496–3506 (2000).

DOI: https://doi.org/10.1021/jp992444r

J. Aguiar, P. Carpena, J. A. Molina-Bolivar, C. Carne-ro Ruiz, On the determination of the critical micelle concentration by the pyrene 1:3 ratio method, J. Col-loid Interface Sci. 258, 116–122 (2003).

DOI: https://doi.org/10.1016/S0021-9797(02)00082-6

C. C. Ruiz, Thermodynamics of micellization of tetradecyltrimethylammonium bromide in ethylene glycol–water binary mixtures, Colloid. Polym. Sci. 277, 701–707 (1999).

DOI: https://doi.org/10.1007/s003960050443

H. Akbaş, C. Kartal, Conductometric studies of hexa-decyltrimethylammonium bromide in aqueous solu-tions of ethanol and ethylene glycol, Colloid J. 68, 125–130 (2006).

DOI: https://doi.org/10.1134/S1061933X06020013

A. Rodríguez, M. M. Graciani, M. L. Moyá, Effects of addition of polar organic solvents on micellization, Langmuir, 24, 12785–12792 (2008).

DOI: https://doi.org/10.1021/la802320s

A. Shrivastava, K. K. Ghosh, Micellization of cetyl triphenyl phosphonium bromide surfactant in binary aqueous solvents, J. Surfactants Deterg. 11, 287–292 (2008). DOI: https://doi.org/10.1007/s11743-008-1083-5

A. Rodríguez, M. M. Graciani, G. Fernández, M. L. Moyá, Effects of glycols on the thermodynamic and micellar properties of TTAB in water, J. Colloid Inter-face Sci. 338, 207–215 (2009).

DOI: https://doi.org/10.1016/j.jcis.2009.06.005

P. A. Kabir-ud-Din, P. A. Koya, Effect of acetonitrile on the micellization and thermodynamic parameters of tetradecyltrimethylammonium bromide: Conductomet-ric and fluorimetric studies, J. Mol. Liq. 158, 111–116 (2011).

DOI: https://doi.org/10.1016/j.molliq.2010.11.003

N. Dubey, CTAB aggregation in solutions of higher alcohols: Thermodynamic and spectroscopic studies, J. Mol. Liq. 184, 60–67 (2013).

DOI: https://doi.org/10.1016/j.molliq.2013.04.022

A. Janošević Ležaić, N. Paunović, N. Pejić, Thermo-dynamics of micellization of hexadecyltrime-thylammonium bromide in propylene glycolwater mixture: a conductivity study, FU Phys. Chem. Tech. 12, 17–26 (2014). DOI: https://doi.org/10.2298/FUPCT1401017J

W. Li, Y-C. Han, J-L. Zhang, B-G. Wang, Effect of ethanol on the aggregation properties of cetyltrime-thylammonium bromide surfactant, Colloid J. 67, 159–163 (2005).

DOI: https://doi.org/10.1007/s10595-005-0075-7

I. Benito, M. A. Garcia, C. Monge, J. M. Saz, M. L. Marina, Spectrophotometric and conductometric de-termination of the critical micellar concentration of sodium dodecyl sulfate and cetyltrimethylammonium bromide micellar systems modified by alcohol and salts, Colloids Surf. A, 125, 221–224 (1997).

DOI: https://doi.org/10.1016/S0927-7757(97)00014-9

F. Jalali, A. Gerandaneh, Micellization of cetyltrime-thylammonium bromide (CTAB) in mixed solvents and in the presence of potassium bromide, J. Dispers. Sci. Technol. 32, 659–666 (2011).

DOI: https://doi.org/ 10.1080/01932691003800049

J. Goronja, N. Pejić, A. Janošević Ležaić, D. Stanisavljev, A. Malenović, Using a combination of experimental and mathematical method to explore crit-ical micelle concentration of a cationic surfactant, J. Chem. Educ. 93, 1277–1281 (2016).

DOI: https://doi.org/10.1021/acs.jchemed.5b00913

J. Goronja, A. Janošević Ležaić, B. Dimitrijević, A. Malenović, D. Stanisavljev, N. Pejić, Determination of critical micelle concentration of cetyltrimethylammo-nium bromide: different procedures for analysis of experimental data, Hem. Ind. 70, 485–492 (2016).

DOI: https://doi.org/10.2298/HEMIND150622055G

P. K. Misra, B. K. Mishra, G. B. Behera, Micellization of ionic surfactants in tetrahydrofuran-water and ace-tonitrile-water mixed solvent systems, Colloids Surf. 57, 1–10 (1991).

DOI: https://doi.org/10.1016/0166-6622(91)80175-N

A. S. Kord, M. G. Khaledi, Controlling solvent strength and selectivity in micellar liquid chromatography: role of organic modifiers and micelles, Anal. Chem. 64, 1894–1900 (1992).

DOI: https://doi.org/10.1021/ac00041a026

A. Cifuentes, J. L. Bernal, J. C. Diez-Masa, Determi-nation of critical micelle concentration values using capillary electrophoresis instrumentation. Analytical chemistry, Anal. Chem. 69, 4271–4274 (1997).

DOI: https://doi.org/10.1021/ac970696n

P. Carpena, J. Aguiar, P. Bernaola-Galván, C. Carnero Ruiz, Problems associated with the treatment of con-ductivity-concentration data in surfactant solutions: simulations and experiments, Langmuir, 18, 6054–6058 (2002). DOI: https://doi.org/10.1021/la025770y

C. Vautier-Giongo, B. L. Bales, Estimate of the ioniza-tion degree of ionic micelles based on Krafft tempera-ture measurements, J. Phys. Chem. B, 107, 5398–5403 (2003). DOI: https://doi.org/10.1021/jp0270957

J. Ž. Manojlović, The Krafft temperature of surfactant solutions, Therm. Sci. 16, S701–S710 (2012).

DOI: https://doi.org/10.2298/tsci120427197m

J. C. Roy, Md. N. Islam, G. Aktaruzzaman, The effect of NaCl on the Krafft temperature and related behav-ior of cetyltrimethylammonium bromide in aqueous solution, J. Surfactants Deterg. 17, 231–242 (2014).

DOI: https://doi.org/10.1007/s11743-013-1510-0

L. Piñeiro, M. Novo, W. Al-Soufi, Fluorescence emis-sion of pyrene in surfactant solutions, Adv. Colloid In-terface Sci. 215, 1–12 (2015).

DOI: https://doi.org/10.1016/j.cis.2014.10.010

N. J. Turro, A. Yekta, Luminescent probes for deter-gent solutions. A simple procedure for determination of the mean aggregation number of micelles, J. Am. Chem. Soc. 100, 5951–5952 (1978).

DOI: https://doi.org/10.1021/ja00486a062

L. G. Gagliardi, C. B. Castells, C. Ràfols, M. Rosés, E. Bosch, Static dielectric constants of acetonitrile/water mixtures at different temperatures and Debye-Hückel A and a0B parameters for activity coefficients, J. Chem. Eng. Data 52, 1103–1107 (2007).

DOI: https://doi.org/ 10.1021/je700055p

Н. Nazir, М. S. Ahanger, A. Akbar, Micellization of cationic surfactant cetyltrimethylammonium bromide in mixed water-alcohol media, J. Dispers. Sci. Tech-nol. 30, 51–55 (2009).

DOI: https://doi.org/ 10.1080/01932690802477264

G. D Noudeh, M. Housaindokht, B. S. F. Bazzaz, The effect of temperature on thermodynamic parameters of micellization of some surfactants, J. Appl. Sci.7, 47–52 (2007). DOI: https://doi.org/10.3923/jas.2007.47.52

S. Kumar, K Parikh, Influence of spacer on association behavior and thermodynamic parameters of dimeric cationic surfactants, Surfactants Deterg. 16, 739–749 (2013). DOI: https://doi.org/10.1007/s11743-013-1467-z

A. K. Sood, R. Kaur, T. S. Banipal, Influence of or-ganic solvents, head-groups and temperature on the micellar behavior of some cationic surfactants, Indian J. Chem. 55, 34–43 (2016).

D. Atwood, A. T. Florence, Surfactants Systems: Their Chemistry, Pharmacy and Biology, Chapman and Hall, New York, 1983.

R. Abdel-Rahem, Influence of glycerol and tempera-ture on the phase behavior and micellization of CTAB and SDS in aqueous solutions, J. Dispers. Sci. Technol. 34, 932–940 (2013).

DOI: https://doi.org/10.1080/01932691.2012.731647

Y. Moroi, Micelles: Theoretical and Applied Aspects, Springer US, New York, 1992.

J. Luczak, C. Jungnickel, M. Joskowska, J Thöming, Thermodynamics of micellization of imidazolium ion-ic liquids in aqueous solutions J. Colloid Interf. Sci. 336, 111–116 (2009).

DOI: https://doi.org/10.1016/j.jcis.2009.03.017

R. M. Pashley, M. E. Karaman, Applied Colloid and Surface Chemistry, Wiley&Sons, United States, pp. 39, 2004.

J. van Stam, S. Depaemelaere, F. C. De Schryver, Mi-cellar aggregation numbers – A fluorescence study, J. Chem. Educ. 75, 93–98 (1998).

DOI: https://doi.org/10.1021/ed075p93

G. D'Errico, D. Ciccarelli, O. Ortona, Effect of glycerol on micelle formation by ionic and nonionic surfac-tants at 25 C, J. Colloid Interf. Sci. 286, 747–754 (2005). DOI: https://doi.org/10.1016/j.jcis.2005.01.030

R. Nagarajan, Molecular packing parameter and sur-factant self-assembly: the neglected role of the surfac-tant tail. Langmuir, 18, 3138 (2002).

DOI: https://doi.org/10.1021/la010831y

C. Tanford, The Hydrophobic Effect, Wiley, New York, 1980.




How to Cite

Janošević Ležaić, A. M., Pejić, N., Goronja, J., Pavun, L., Đikanović, D., & Malenović, A. (2021). Micellar properties of cetyltrimethylammonium bromide in an acetonitrile–water mixture: Conductometric and fluorescence studies. Macedonian Journal of Chemistry and Chemical Engineering, 40(2), 277–287. https://doi.org/10.20450/mjcce.2021.2394



Physical Chemistry

Most read articles by the same author(s)