Antioxidant capacity and antimicrobial effects of zinc complexes of flavonoids – Does synergism exist?

Authors

  • Leposava Pavun Faculty of Pharmacy, University of Belgrade
  • Aleksandra Janošević-Ležaić Faculty of Pharmacy, University of Belgrade
  • Slađana Tanasković Faculty of Pharmacy, University of Belgrade
  • Dušan Ušjak Faculty of Pharmacy, University of Belgrade
  • Marina Milenković Faculty of Pharmacy, University of Belgrade
  • Snezana Uskokovic-Markovic Faculty of Pharmacy, University of Belgrade

DOI:

https://doi.org/10.20450/mjcce.2021.2401

Keywords:

flavonoids, zinc, antioxidants, antimicrobial effect

Abstract

There is a constant need for effective drugs, combinations of drugs and methods for the prevention of bacterial and viral infections, including coronavirus. It is known that the role of trace elements in strengthening the human immune system is significant. Vitamins, trace elements, including zinc, iron, selenium, magnesium and copper, and omega-3 fatty acids, play essential physiological roles in promoting the immune system. Zinc is a necessary microelement for basic enzymatic physiological processes; it plays an important role in cell division and is involved in the development of cells responsible for non-specific immunity. Zinc deficiency is known to predispose patients to viral infection due to reduced antiviral immunity. In addition, flavonoids as plant metabolites play an important role in oxidative stress prevention. This manuscript aims to discuss the roles of zinc, flavonoids and their complexes in vitro, as well as their antioxidant and antimicrobial activities. The justification for the simultaneous use of zinc and flavonoids is also considered.

Author Biographies

Aleksandra Janošević-Ležaić, Faculty of Pharmacy, University of Belgrade

Department of Physical Chemistry and Instrumental Methods

Marina Milenković, Faculty of Pharmacy, University of Belgrade

Department of Microbiology and Immunology

References

R. Miller, S. J. Owens, B. Rørslett, Plants and colour: Flowers and pollination, Optics & Laser Tech. 43, 282–294 (2011).

DOI: https://doi.org/10.1016/j.optlastec.2008.12.018

K. Ohashi, T. T. Makino, K. Arikawa, Floral colour change in the eyes of pollinators: testing possible constraints and correlated evolution, Funct. Ecol. 29, 1144–1155 (2015).

DOI: https://doi.org/10.1111/1365-2435.12420

E. Wollenweber, M. Dörr, M. Christ, Flavonoid aglycones from the leaf and stem exudates of some Geraniaceae species. Natural Product Comm. 6, 15–16 (2011).

DOI: https://doi.org/10.1177%2F1934578X1100600105

A. N. Panche, A. D. Diwan, S. R. Chandra, Flavonoids: an overview J. Nutr. Sci. 5, e47, (2016).

DOI: https://doi.org/10.1017/jns.2016.41

C. F. Skibola, M. T. Smith, Potential health impacts of excessive flavonoid intake. Free Radic. Biol. Med. 29, 375–383 (2000).

DOI: https://doi.org/10.1016/S0891-5849(00)00304-X

S. A. van Acker, D. J. van den Berg, M. N. Tromp, D. H. Griffioen, W. P. van Bennekom, W. J. van der Vijgh, A. Bast, Structural aspects of antioxidant activity of flavonoids, Free Radic. Biol. Med. 20, 331–342 (1996). DOI: https://doi.org/10.1016/0891-5849(95)02047-0

J. Treml, K. Smejkal, Flavonoids as Potent Scavengers of Hydroxyl Radicals, Compr. Rev. Food Sci. 15, 720-738 (2016). DOI: https://doi.org/10.1111/1541-4337.12204

R. K. Gupta, A. K. Patel, N. Shah, A. K. Choudhary, U. K. Jha, U. C. Yadav, P. K. Gupta, U. Pakuwal, Oxidative stress and antioxidants in disease and cancer: A review, Asian Pacific J. Canc. Prev. 15, 4405–4409 (2014).

DOI: https://doi.org/10.7314/APJCP.2014.15.11.4405

L. Hooper, P. A. Kroon, E. B. Rimm, J. S. Cohn, I. Harvey, K. A. Le Cornu et al. Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials, Am. J. Clin. Nutr. 88, 38–50 (2008). DOI: https://doi.org/10.1093/ajcn/88.1.38

P. Velayutham, A. Babu, D. Liu, Flavonoids and Cardiovascular Health in Complementary and Alternative Therapies and the Aging Population – Chapter 18, Watson RR (Ed), Academic Press, 2009, pp. 371–392.

D. M. Kopustinskiene, V. Jakstas, A. Savickas, J. Bernatoniene, Flavonoids as Anticancer Agents, Nutrients, 12, 457–481 (2020).

DOI: https://doi.org/10.3390/nu12020457

I. Gorniak, R. Bartoszewski, J. Kroliczewski, Compre-hensive review of antimicrobial activities of plant flavonoids, Phytochem. Rev. 18, 241–272 (2019).

DOI: https://doi.org/10.1007/s11101-018-9591-z

S. Lalani, C. L. Poh, Flavonoids as antiviral agents for enterovirus A71 (EV-A71), Viruses, 12, 184–218 (2020). DOI: https://doi.org/10.3390/v12020184

M. Kawai, T. Hirano, S. Higa, J. Arimitsu, M. Maruta, Y. Kuwahara et al., Flavonoids and related compounds as anti-allergic substances, Allergol. Int. 56, 113–123 (2007).

DOI: https://doi.org/10.2332/allergolint.R-06-135

J. P. Spencer, Flavonoids and brain health: multiple effects underpinned by common mechanisms, Genes. Nutr. 4, 243–250 (2009).

DOI: https://dx.doi.org/10.1007%2Fs12263-009-0136-3

I. Demonty, Y. Lin, Y. E. Zebregs, M. A. Vermeer, H. C. van der Knaap, M. Jakel et al., The citrus flavonoids hesperidin and naringin do not affect serum cholesterol in moderately hypercholesterolemic men and women, J. Nutr. 140, 1615–1620 (2010).

DOI: https://doi.org/10.3945/jn.110.124735

G. Galati, P. J. O'Brien, Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med. 37, 287–303 (2004).

DOI: https://doi.org/10.1016/j.freeradbiomed.2004.04.034

M. Stefova, T. Stafilov, S. Kulevanova, HPLC analysis of flavonoid. In: Encyclopedia of Chromatography, 1st ed., J. Cazes (Ed.); Marcel Dekker, Inc., New York, NY, USA, 2003; pp.1–7.

A. M. Engida, N. S. Kasim, Y. A. Tsigie, S. Ismadji, L. H. Huynh, Y-H. Jua, Extraction, identification and quantitative HPLC analysis of flavonoids from sarang semut (Myrmecodia pendan), Industrial Crops and Products, 41, 392–396 (2013).

DOI: https://doi.org/10.1016/j.indcrop.2012.04.043

S. W. A. Bligh, O. Ogegbo, Z. T. Wang, Flavonoids by HPLC in Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes. K. Ramawat, J. M. Mérillon (eds), Springer, Berlin, Heidelberg, 2013, pp.2017–2144.

K. Zhang, Y. Zuo, GC-MS Determination of flavonoids and phenolic and benzoic acids in human plasma after consumption of cranberry juice, J. Agric. Food Chem. 52, 222–227 (2004).

DOI: https://doi.org/10.1021/jf035073r

J. H. Lee, Y. Kim, M. H. Hoang et al., Rapid quantification of cellular flavonoid levels using quercetin and a fluorescent diphenylboric acid 2-amino ethyl ester probe, Food Sci. Biotechnol. 23, 75–79, (2014).

DOI: https://doi.org/10.1007/s10068-014-0010-y.

D. Barbieri, M. Gabriele, M. Summa, R. Colosimo, D. Leonardi, V. Domenici, L. Pucci, Antioxidant, nutraceutical properties, and fluorescence spectral profiles of bee pollen samples from different botanical origins, Antioxidants, 9, 1001 (2020).

DOI: https://dx.doi.org/10.3390%2Fantiox9101001.

E. S. Gil, R. O. Couto, Flavonoid electrochemistry: a review on the electroanalytical applications, Revista Brasileira de Farmacognosia 23, 542–558 (2020).

DOI: https://doi.org/10.1590/S0102-695X2013005000031

J. Hu, Z. Zhang, Application of electrochemical sensors based on carbon nanomaterials for detection of flavonoids. Nanomaterials 10, 2020 (2020).

DOI: https://doi.org/10.3390/nano10102020

L. Zhao, W. Liu, S. Xiong, J. Tang, Z. Lou, M. Xie, B. Xia, L. Lin, D. Liao, Determination of total flavonoids contents and antioxidant activity of ginkgo biloba leaf by near-infrared reflectance method, Int. J. Anal. Chem. 2018, 8195784, (2018).

DOI: https://dx.doi.org/10.1155%2F2018%2F8195784

N. Samad, T. E. Sodunke, A. R. Abubakar et al., The implications of zinc therapy in combating the COVID-19 global pandemic, J. Inflamm. Res. 14, 527–550 (2021). DOI: https://doi.org/10.2147/jir.s295377

W. Alker, H. Haase, Zinc and Sepsis. Nutrients 10, 976–993 (2018). DOI: https://doi.org/10.3390/nu10080976

N. Roohani, R. Hurrell, R. Kelishadi, R. Schulin, Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 18, 144–157 (2013).

K. Simmer, R. P. H. Thompson, Zinc in the fetus and new¬born, Acts Paediatr. Scand. (Suppl), 319, 158–163 (1985). DOI: https://doi.org/10.1111/j.1651-2227.1985.tb10126.x

B. D. Chiranjib, K. P. S. Kumar, A potential medicinal importance of zinc in human health and chronic disease, Int. J. Pharm. Biomed. Sci. 1, 5–11 (2010).

S. Uskoković-Marković, M. Milenković, L. Pavun, Zinc-quercetin complex – from determination to bioactivity, Acta Agricult. Serb. 25, 113–120 (2020), DOI: http://dx.doi.org/10.5937/AASer2050113U

L. Pavun, A. Janošević Ležaić, S. Uskoković-Marković, Spectrophotometric determination of morin in strawberries and their antioxidant activity, Arh. Farm. 71, 1–17 (2021). DOI: http://dx.doi.org/10.5937/arhfarm71-30503

C. F. Hsu, H. Peng, C. Basle, J. Travas-Sejdic, P. A. Kilmartin. ABTS•+ scavenging activity of polypyrrole, polyaniline and poly(3,4-ethylenedioxythiophene), Polym. Int. 60, 69–77 (2011).

DOI: https://doi.org/10.1002/pi.2912

Y. Wei, M. Guo, Zinc-binding sites on selected flavonoids, Biol. Trace Elem. Res. 161, 223–230 (2014). DOI: https://doi.org/10.1007/s12011-014-0099-0

L. Pavun, M. Jelikić-Stankov, P. Đurđević, A. Ćirić, S. Uskoković-Marković, Zinc Complex-Based Determi-nation of Rutin in Dietary Supplements, Maced. J. Chem. Chem. Eng. 35, 13–18 (2016).

DOI: http://dx.doi.org/10.20450/mjcce.2016.897

L. Pavun, S. Uskoković-Marković, Spectrophotometric determination of hesperidin in supplements and orange juices, Hrana i ishrana, 60, 18–23 (2019).

DOI: http://dx.doi.org/10.5937/HraIsh1901018P

S. B. Kedare, R. P. Singh, Genesis and development of DPPH method of antioxidant assay, J. Food Sci. Technol. 48, 412–422 (2011).

DOI: https://doi.org/10.1007/s13197-011-0251-1

K. Sridhar, A. L. Charles, In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs, Food Chem. 275, 41–49 (2019).

DOI: https://doi.org/10.1016/j.foodchem.2018.09.040

K. Sirivibulkovit, S. Nouanthavong, Y. Sameenoi, Paper-based DPPH assay for antioxidant activity analysis, Anal. Sci. 34, 795–800 (2018).

DOI: https://doi.org/10.2116/analsci.18p014

I. F. Benzie, J. J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay, Anal. Biochem. 239, 70–76 (1996).

DOI: https://doi.org/10.1006/abio.1996.0292

R. Derwand, M. Scholz, Does zinc supplementation enhance the clinical efficacy of chloroquine/ hydroxychloroquine to win today’s battle against COVID-19? Med. Hypotheses 142, 109815 (2020).

DOI: https://doi.org/10.1016/j.mehy.2020.109815

A. V. Skalny, L. Rink, O. P. Ajsuvakova, et al. Zinc and respiratory tract infections: perspectives for COVID-19 (Review), Int. J. Mol. Med.46, 17–26 (2020).

DOI: https://doi.org/10.3892/ijmm.2020.4575

I. Wessels, B. Rolles, L. Rink, The Potential Impact of Zinc Supplementation on COVID-19 Pathogenesis, Front. Immunol. 11, 1712–1723 (2020).

DOI: https://doi.org/10.3389/fimmu.2020.01712

M. S. Refat, R. Z. Hamza, A. M. A. Adam, H. A. Saad, A. A. Gobouri, F. S. Al-Harbi, et al. Quercetin/Zinc complex and stem cells: A new drug therapy to ameliorate glycometabolic control and pulmonary dysfunction in diabetes mellitus: Structural characterization and genetic studies, PLoS ONE, 16, e0246265. (2021).

DOI: https://doi.org/10.1371/journal.pone.0246265

M. Russo, S. Moccia, C. Spagnuolo, I. Tedesco, G. L. Russo, Roles of flavonoids against coronavirus infection, Chem. Biol. Interact. 328, 109211, (2020). DOI: https://doi.org/10.1016/j.cbi.2020.109211

Downloads

Published

2021-11-26

How to Cite

Pavun, L., Janošević-Ležaić, A., Tanasković, S., Ušjak, D., Milenković, M., & Uskokovic-Markovic, S. (2021). Antioxidant capacity and antimicrobial effects of zinc complexes of flavonoids – Does synergism exist?. Macedonian Journal of Chemistry and Chemical Engineering, 40(2), 231–239. https://doi.org/10.20450/mjcce.2021.2401

Issue

Section

Natural Products

Most read articles by the same author(s)