Spectrofluorimetric determination of quercetin in pharmaceutical dosage forms


  • Leposava Pavun University of Belgrade-Faculty of Pharmacy P.O.Box 146, 11000 Belgrade, Serbia
  • Predrag Đurđević Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
  • Milena Jelikić-Stankov University of Belgrade-Faculty of Pharmacy, P.O.Box 146, 11000 Belgrade, Serbia
  • Daniela Đikanović Centre for Multidisciplinary Studies, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
  • Andrija Ćirić Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
  • Snežana Uskoković-Marković University of Belgrade-Faculty of Pharmacy, P.O.Box 146, 11000 Belgrade, Serbia




Quercetin, flavonoids, spectrofluorimetric determination, RP-HPLC, capsules


The simple, accurate and precise method based on fluorescence properties of aluminium (III)–quercetin complex, for the determination of quercetin has been developed and validated. The complex has strong emission at pH 3.30, lem = 480 nm, with lex = 420 nm. Linearity range of quercetin determination was 1.5 - 60.5 ng mL-1 with LOD 0.09 ng mL-1 and LOQ 0.27 ng mL-1. Recovery values in the range of 99.9 – 100.2 % indicate a good accuracy of the method. The established method was applied for the determination of quercetin in capsules, with Recovery value 98.3 %, standard deviation 0.22 % and coefficient of variation 0.09 %.

  The reliability of the method was checked by RP-HPLC/UV method for capsules with direct determination of quercetin after separation. The good agreement between two methods indicates the applicability usability of the proposed spectroflurometric method for quercetin determination in pharmaceutical dosage forms, with high reproducibility, and enables direct and simple determination without its prior extraction from samples.

The proposed spectrofluorimetric method has much better sensitivity and about 1000 times lower LOD and LOQ values compared to data reported in literature.


S. Wang, K. Huang, Determination of flavonoids by high-performance liquid chromatography and capillary electrophoresis, J. Chromatogr. A, 1032, 273-279 (2004).

J. Spencer, Flavonoids: modulators of brain function?, Br. J. Nutr., 99, 60-77 (2008).

M.G. Hertog, P.C. Hollman, M. Katan, D. Kromhout, Intake of potentially anticarcinogenic flavonoids and their determinants in adults in the Netherlands, Nutr. Cancer 20, 21-29 (1993).

V. Kuntić, S. Blagojević, V. Vukojević, D. Malešev, Z. Radović, Spectrophotometric investigation of the Pd(II)-quercetin complex in 50% ethanol, Monatshefte fűr Chemie, 129, 41-48 (1998).

D. Kostić, G. Miletić, S. Mitić, I. Rašić, V. Živanović, Spectrophotometric determination of microamounts of quercetin on its complexation with copper(II), Chem. Pap., 61, 73-76 (2007).

S. Birjees Bukhari, S. Memon, M. Mahroof-Tahir, M.I. Bhanger, Synthesis, characterization and antioxidant activity copper–quercetin complex, Spectrochim. Acta Part A 71, 1901–1906 (2009).

S. Birjees Bukhari, S. Memon, M. Mahroof-Tahir, M. Bhanger, Synthesis, characterization and investigation of antioxidant activity of cobalt–quercetin complex, J. Molec. Struct. 892, 39–46 (2008).

R. Frederice, A. Ferreira, M. Gehlen, Molecular fluorescence in silica particles doped with quercetin-Al3+ complexes, J. Braz. Chem. Soc., 21, 1213-1217 (2010).

C. Kandaswami, E. Jr. Middleton, Free radical scavenging and antioxidant activity of plant flavonoids. Adv. Exp. Med. Biol., 366, 351-376 (1994).

W. Bors, W. Heller, C. Michel, M. Saran, Flavonoids as antioxidants: determination of radical-scavenging efficiencies, Methods Enzymol., 186, 343-355 (1990).

C. De Whalley, S. Rankin, J. Hoult, W. Jessup, D. Leake, Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages, Biochem. Pharmacol., 39, 1743-1750 (1990).

M. Navab, J. Berliner, A. Watson, S. Hama, M. Territo, A. Lusis, D. Shih, B. van Lenten, J. Frank, L. Demer, P. Edwards, A. Fogelman, The Yin and Yang of oxidation in the development of the fatty streak, Arterioscler. Thromb. Vase. Biol., 16, 831-842 (1996).

F. Wang, T. Yao, S. Zeng, Determination of quercetin and kaempferol in human urine after orally administrated tablet of ginkgo biloba extract by HPLC, J. Pharm. Biomed. Anal., 33, 317-321 (2003).

K. Ishii, T. Furuta, Y. Kasuya, High-performance liquid chromatographic determination of quercetin in human plasma and urine utilizing solid-phase extraction and ultraviolet detection, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 794, 49-56 (2003).

S. Wang S, D. Di, X. Liu, S. Jiang, Determination of luteolin and quercetin in the capsule of Lamiophlomis Rotata (Benth.) Kudo by HPLC coupled with weighted least squares linear regression. J. Liq. Chromatog. Rel. Technol., 30, 1991-1999 (2007).

Y. Zheng, L. Ye, L. Yan, Y. Gao, The electrochemical behavior and determination of quercetin in choline chloride/urea deep eutectic solvent electrolyte based on abrasively immobilized multi-wall carbon nanotubes modified electrode, Int. J. Electrochem. Sci., 9, 238 - 248 (2014).

L. Wang, ME. Morris, Liquid chromatography-tandem mass spectroscopy assay for quercetin and conjugated quercetin metabolites in human plasma and urine, J. Chromatogr. B, 821, 194-201 (2005).

N. Pejić, V. Kuntić, Z. Vujić, S. Mićić, Direct spectrophotometric determination of quercetin in the presence of ascorbic acid, Il Farmaco, 59, 21–24 (2004).

V. Kuntić, N. Pejić, S. Mićić, V. Vukojević, Z. Vujić, D. Malešev, Determination of quercetin in pharmaceutical formations via its reaction with potassium titanyloxalate. Determination of the stability constants of the quercetin titanyloxalato complex, J. Serb. Chem. Soc., 70, 753–763 (2005).

G.J.Volikakis, C.E. Efstathiou, Fast screening of total flavonols in wines, tea-infusions and tomato juice by flow injection/adsorptive stripping voltammetry, Anal. Chim. Acta 551, 124–131 (2005).

S.U. Rakesh, P.R. Patil, V.R. Salunkhe, P.N. Dhabale, K.B. Burade, HPTLC method for quantitative determination of quercetin in hydroalcoholic extract of dried flower of nymphaea stellata willd, Int. J. ChemTech Res., 1, 931-936 (2009).

M. Shaghaghi, J.L. Manzoori, A. Jouyban. Determination of total phenols in tea infusions, tomato and apple juice by terbium sensitized fluorescence method as an alternative approach to the Folin–Ciocalteu spectrophotometric method, Food Chem., 108, 695–701 (2008).

M. Oman, M. Škerget, Ž. Knez, Application of supercritical fluid extraction for the separation of nutraceuticals and other phytochemicals from plant material, Maced. J. Chem. Chem. Eng., 32, 183–226 (2013).

D. Perrin, B. Dempsey, Buffers for pH and Metal Ion Control; Chapman and Hall, London, 1974, pp 77-94.

Validation of analytical procedures: Methodology, ICH Guideline Q2B. 1997, Federal

Register 62, No. 96, 27463–27467.

J. Miller, J. Miller, In Statistics and Chemometrics for Analytical Chemistry, 5th edn. Pearson Education Ltd., London, 2005, p. 121.

J. Inczédy, Analytical applications of complex equilibria, Horwood and Willy, New York, 1976 p. 137.

D. Malešev, Z. Radović, M. Jelikić-Stankov, Investigation of europium (III)-rutin complex in water-ethanolic solution, Spectrosc. Lett., 26, 1985-1995 (1993).




How to Cite

Pavun, L., Đurđević, P., Jelikić-Stankov, M., Đikanović, D., Ćirić, A., & Uskoković-Marković, S. (2014). Spectrofluorimetric determination of quercetin in pharmaceutical dosage forms. Macedonian Journal of Chemistry and Chemical Engineering, 33(2), 209–215. https://doi.org/10.20450/mjcce.2014.496



Natural Products

Most read articles by the same author(s)