Establishing mass spectral fragmentation patterns for characterization of 1,2 -unsaturated pyrrolizidine alkaloids and N-oxides in Boraginaceae species from Macedonia using LC-ESI-MS/MS

Authors

  • Jasmina Petreska Stanoeva Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Macedonia
  • Elena Stefova Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Macedonia
  • Marinela Cvetanoska Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Macedonia
  • Jane Bogdanov Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Macedonia

Keywords:

pyrrolizidine alkaloids and N-oxides, tandem mass spectrometry, Boraginaceae

Abstract

Pyrrolizidine alkaloids (PAs) are secondary plant metabolites, and their 1,2-unsaturated derivatives, which contain the retronecine, heliotridine, or otonecine type of the necine base, have raised concern due to their ability to form hepatotoxic intermediates and exhibit serious toxic effects. Several hundred individual pyrrolizidine alkaloids and their N-oxides have been identified mostly using liquid chromatography coupled with mass spectrometry, although the number of available reference standards is limited.

In this work, characteristic fragment ions and their abundance in the mass spectra of different PAs were used to reveal typical fragmentation patterns for various classes of PAs that can be further employed to distinguish monoesters (retronecine, heliotridine type), open chain diesters and macrocyclic diesters, and corresponding N-oxides.

Fragment ions at m/z 120 and 138 were found in all types of PAs with a different relative abundance. Additional observation of fragment ions at m/z 94 and 156 was found to be typical for monoester PAs esterified at position C9 of the necin base, whereas fragment ions at m/z 111 and 172 were characteristic for monoester N-oxides. Fragment ions at m/z 180 and 220 were found to be typical for open chain diesters with esterification at C7 with acetic and angelic acid, respectively, whereas fragment ions at m/z 214 and 254 were characteristic for the respective N-oxides. For the 3ʹ-acetyl PA monoester or open chain diester derivatives, characteristic fragment ions were observed after loss of the acetyl moiety ([M+H]+–60), whereas for macrocyclic diesters and their N-oxides, fragment ions due to the neutral loss of CO were found ([M+H]+–28).

References

(1) El-Shazly, A.; Wink, M., Diversity of pyrrolizidine alkaloids in the Boraginaceae structures, distribution, and biological properties. Diversity 2014, 6 (2), 188–282. https://doi.org/10.3390/d6020188.

(2) Chen, L.; Mulder, P. P. J.; Peijnenburg, A.; Rietjens, I. M. C. M., Risk assessment of intake of pyrrolizidine alkaloids from herbal teas and medicines following realistic exposure scenarios. Food Chem. Toxicol. 2019, 130 (May), 142–153.

https://doi.org/10.1016/j.fct.2019.05.024.

(3) Zuckerman, M.; Steenkamp, V.; Stewart, M. J., Hepatic veno-occlusive disease as a result of a traditional remedy: confirmation of toxic pyrrolizidine alkaloids as the cause, using an in vitro technique. J. Clin. Pathol. 2002, 55 (9), 676–679. https://doi.org/10.1136/jcp.55.9.676.

(4) Reinhard, H.; Zoller, O., Pyrrolizidine alkaloids in tea, herbal tea and iced tea beverages – survey and transfer rates. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2021, 38 (11), 1914–1933. https://doi.org/10.1080/19440049.2021.1941302.

(5) Casado, N.; Morante-Zarcero, S.; Sierra, I., The concerning food safety issue of pyrrolizidine alkaloids: an overview. Trends Food Sci. Technol. 2022, 120, 123–139. https://doi.org/10.1016/j.tifs.2022.01.007.

(6) Moreira, R.; Pereira, D. M.; Valentão, P.; Andrade, P. B., Pyrrolizidine alkaloids: chemistry, pharmacology, toxicology and food safety. Int. J. Mol. Sci. 2018, 19 (6). https://doi.org/10.3390/ijms19061668.

(7) He, Y.; Zhu, L.; Ma, J.; Lin, G., Metabolism-mediated cytotoxicity and genotoxicity of pyrrolizidine alkaloids. Arch. Toxicol. 2021, 95 (6), 1917–1942. https://doi.org/10.1007/s00204-021-03060-w.

(8) Teschke, R.; Vongdala, N.; Quan, N. Van; Quy, T. N.; Xuan, T. D., Metabolic toxification of 1,2-unsaturated pyrrolizidine alkaloids causes human hepatic sinusoidal obstruction syndrome: the update. Int. J. Mol. Sci. 2021, 22 (19), 1–43. https://doi.org/10.3390/ijms221910419.

(9) El-Shazly, A.; Wink, M., Diversity of pyrrolizidine alkaloids in the Boraginaceae structures, distribution, and biological properties. Divers. 2014, 6 (2), 188–282. https://doi.org/10.3390/d6020188.

(10) Prada, F.; Stashenko, E. E.; Martínez, J. R. LC/MS Study of the diversity and distribution of pyrrolizidine alkaloids in Crotalaria species growing in Colombia. J. Sep. Sci. 2020, 43 (23), 4322–4337.

https://doi.org/10.1002/jssc.202000776.

(11) Schramm, S.; Köhler, N.; Rozhon, W., Pyrrolizidine alkaloids: biosynthesis, biological activities and occurrence in crop plants. Molecules 2019, 24 (3).

https://doi.org/10.3390/molecules24030498.

(12) Wiedenfeld, H.; Pyrrolizidine alkaloids. In: Encyclopedia of Toxicology (Third edition), Academic Press: Oxford, 2014; pp 1170–1174.

https://doi.org/10.1016/B978-0-12-386454-3.00054-3.

(13) Crews, C., Methods for analysis of pyrrolizidine alkaloids. In: Ramawat K., Mérillon JM. (Eds.) Natural Products.; Springer, Berlin, Heidelberg, 2013; pp 1050–1065. https://doi.org/10.1007/978-3-642-22144-6_186.

(14) Gotti, R., Analysis of alkaloids by capillary electrophoresis. In: Ramawat K., Mérillon JM. (Eds.) Natural Products.; Springer, Berlin, Heidelberg 2013; pp 1155–1992. https://doi.org/10.1007/978-3-642-22144-6_190.

(15) Kopp, T.; Abdel-Tawab, M.; Mizaikoff, B., Extracting and analyzing pyrrolizidine alkaloids in medicinal plants: A review. Toxins (Basel). 2020, 12 (5), 7–10. https://doi.org/10.3390/toxins12050320.

(16) Mroczek, T.; Glowniak, K.; Wlaszczyk, A. Simul-taneous determination of N-oxides and free bases of pyrrolizidine alkaloids by cation-exchange solid-phase extraction and ion-pair high-performance liquid chromatography. J. Chromatogr. A 2002, 949 (1–2), 249–262.

https://doi.org/10.1016/S0021-9673(01)01498-4.

(17) Bestimmung von Pyrrolizidinalkaloiden (PA) in Pflanzenmaterial mittels SPE-LC-MS/MS. Methoden-beschreibung. BfR – Bundesinstitut für Risikobewertung 2014, 1–17.

(18) Country Study for Biodiversity of the Republic of Macedonia (First National Report). Museum 2003.

(19) Colegate, S. M.; Edgar, J. A.; Knill, A. M.; Lee, S. T., Solid-phase extraction and HPLC-MS profiling of pyrrolizidine alkaloids and their N-oxides: A case study of Echium plantagineum. Phytochem. Anal. 2005, 16 (2), 108–119. https://doi.org/10.1002/pca.828.

(20) Lu, A.-J.; Lu, Y.-L.; Tan, D.-P.; Qin, L.; Ling, H.; Wang, C.-H.; He, Y.-Q., Identification of pyrrolizidine alkaloids in Senecio plants by liquid chromatography – mass spectrometry. J. Anal. Methods Chem. 2021, 1957863. https://doi.org/10.1155/2021/1957863.

(21) Ruan, J.; Li, N.; Xia, Q.; Fu, P. P.; Peng, S.; Ye, Y.; Lin, G., Characteristic ion clusters as determinants for the identification of pyrrolizidine alkaloid n-oxides in pyrrolizidine alkaloid-containing natural products using HPLC-MS analysis. J. Mass Spectrom. 2012, 47 (3), 331–337. https://doi.org/10.1002/jms.2969.

(22) Qi, X.; Wu, B.; Cheng, Y.; Qu, H., Simultaneous characterization of pyrrolizidine alkaloids and N-oxides in Gynura Segetum by liquid chromato-graphy/ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23 (2), 291–302. https://doi.org/10.1002/rcm.3862.

(23) Sixto, A.; Pérez-Parada, A.; Niell, S.; Heinzen, H., GC–MS and LC–MS/MS workflows for the identification and quantitation of pyrrolizidine alkaloids in plant extracts, a case study: Echium Plantagineum. Rev. Bras. Farmacogn. 2019, 29 (4), 500–503.

https://doi.org/10.1016/j.bjp.2019.04.010.

(24) Carvalho, J. C. B.; Dos S. Almeida H.; Lobo, J. F. R.; Ferreira, J. L. P.; Oliveira, A. P.; Rocha, L., Pyrrolizidine alkaloids in two endemic capeverdian Echium species. Biochem. Syst. Ecol. 2013, 50, 1–6. https://doi.org/10.1016/j.bse.2013.03.026.

(25) Mädge, I.; Gehling, M.; Schöne, C.; Winterhalter, P.; These, A., Pyrrolizidine alkaloid profiling of four Boraginaceae species from Northern Germany and implications for the analytical scope proposed for monitoring of maximum levels. Food Addit. Contam. Part A: Chem. Anal. Control. Expo. Risk Assess. 2020, 37 (8), 1339–1358.

https://doi.org/10.1080/19440049.2020.1757166.

(26) Skoneczny, D.; Weston, P. A.; Zhu, X.; Gurr, G. M.; Callaway, R. M.; Weston, L. A., Metabolic profiling of pyrrolizidine alkaloids in foliage of two Echium spp. Invaders in Australia — A case of novel weapons? Int. J. Mol. Sci. 2015, 16 (11), 26721–26737.

https://doi.org/10.3390/ijms161125979.

(27) El-Shazly, A.; Sarg, T.; Witte, L.; Wink, M., Pyrrolizidine alkaloids from Cynoglossum creticum. Phytochemistry 1996, 42 (4), 1217–1221.

https://doi.org/10.1016/0031-9422(96)00112-4.

(28) El-Shazly, A.; Sarg, T.; Ateya, A.; Abdel Aziz, A.; El-Dahmy, S.; Witte, L.; Wink, M., Pyrrolizidine alkaloids from Echium setosum and Echium vulgare. J. Nat. Prod. 1996, 59 (3), 310–313.

https://doi.org/10.1021/np9600661.

(29) Schramm, S.; Köhler, N.; Rozhon, W., Pyrrolizidine alkaloids: biosynthesis, biological activities and occurrence in crop plants. Molecules 2019, 24 (3), 1–44. https://doi.org/10.3390/molecules24030498

Downloads

Published

2022-06-19 — Updated on 2022-06-20

Versions

How to Cite

Petreska Stanoeva, J., Stefova, E., Cvetanoska, M., & Bogdanov, J. (2022). Establishing mass spectral fragmentation patterns for characterization of 1,2 -unsaturated pyrrolizidine alkaloids and N-oxides in Boraginaceae species from Macedonia using LC-ESI-MS/MS. Macedonian Journal of Chemistry and Chemical Engineering, 41(1). Retrieved from https://mjcce.org.mk/index.php/MJCCE/article/view/2491 (Original work published June 19, 2022)

Issue

Section

Natural Products

Most read articles by the same author(s)