Phenolic fingerprint of Macedonian propolis

Authors

  • Jasmina Petreska Stanoeva Institute of Chemistry, Faculty of Natural Sciences and Mathematics, 1000 Skopje https://orcid.org/0000-0003-0780-0660
  • Cvetan Stojchevski Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, R.N. Macedonia
  • Vassya Bankova Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria https://orcid.org/0000-0002-2417-6313
  • Marina Stefova Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, R.N. Macedonia https://orcid.org/0000-0003-4232-3759

DOI:

https://doi.org/10.20450/mjcce.2024.2862

Keywords:

propolis, poplar type, HPLC-DAD-ESI-MS/MS, phenolic acids, flavonoids, economic potential

Abstract

Propolis is a chemically complex resinous material collected by honeybees (Apis mellifera) from tree buds and resins, comprising plant exudates, secreted substances from bee metabolism, pollen and waxes. Its chemical composition depends strongly on the plant sources available around the beehive, which have a direct impact оn the quality and bioactivity of the propolis.

In this study, the composition of phenolic compounds in 13 Macedonian propolis extracts was investigated by HPLC-DAD-ESI-MS/MS. Overall, the UV spectra, the MS and MS/MS data allowed the identification of 36 compounds.

The major constituents of propolis were phenolic acids (caffeic and coumaric) and their esters (methyl, (iso)prenyl, benzyl, phenylethyl, cinnamyl), flavonols (quercetin, kaemferol), flavones (chrysin, apigenin, acacetin), flavanonols (pinobanksin) flavanones (pinocembrin naringenin, hesperetin, pinostrobin) and their methylated/esterified derivatives.

The results reveal that Macedonian propolis contains a diversity of phenolic compounds confirming that it is a poplar type of propolis with higher phenolic content (ranging from 43.75–637.94 mg/g) than reported in previous studies in the region and beyond in Europe (< 80 mg/g). This suggests the potential significance of Macedonian propolis as a valuable source of bioactive compounds with health benefits as well as for unlocking its economic potential for industry and beekeepers.

References

(1) Damodaran, T. Chapter 46 - Propolis; Gupta, R. C., Lall, R., Srivastava, A. B. T.-N. (Second E., Eds.; Academic Press, 2021; pp 795–812. https://doi.org/10.1016/B978-0-12-821038-3.00046-X.

(2) F. Zulhendri, K. Chandrasekaran, M. Kowacz, M. Ravalia, K. Kripal, J. Fearnley, C. O. P. Antiviral, Antibacterial, Antifungal, and Antiparasitic Properties of Propolis: A Review. Foods 2021, 10 (1360), 1–29. https://doi.org/10.3390/foods10061360.

(3) Sforcin, J. M. Biological Properties and Therapeutic Applications of Propolis. Phyther. Res. 2016, 30 (6), 894–905. https://doi.org/10.1002/ptr.5605.

(4) Segueni, N.; Akkal, S.; Benlabed, K.; Nieto, G. Potential Use of Propolis in Phytocosmetic as Phytotherapeutic Constituent. Molecules 2022, 27 (18), 1–15. https://doi.org/10.3390/molecules27185833.

(5) Irigoiti, Y.; Navarro, A.; Yamul, D.; Libonatti, C.; Tabera, A.; Basualdo, M. The Use of Propolis as a Functional Food Ingredient: A Review. Trends Food Sci. Technol. 2021, 115, 297–306. https://doi.org/10.1016/j.tifs.2021.06.041.

(6) Belmehdi, O.; El Menyiy, N.; Bouyahya, A.; El Baaboua, A.; El Omari, N.; Gallo, M.; Montesano, D.; Naviglio, D.; Zengin, G.; Skali Senhaji, N.; Goh, B. H.; Abrini, J. Recent Advances in the Chemical Composition and Biological Activities of Propolis. Food Rev. Int. 2023, 39 (9), 6078–6128. https://doi.org/10.1080/87559129.2022.2089164.

(7) Kasote, D.; Bankova, V.; Viljoen, A. M. Propolis: Chemical Diversity and Challenges in Quality Control. Phytochem. Rev. 2022, 21 (6), 1887–1911. https://doi.org/10.1007/s11101-022-09816-1.

(8) Bankova, V.; Bertelli, D.; Borba, R.; Conti, B. J.; da Silva Cunha, I. B.; Danert, C.; Eberlin, M. N.; I Falcão, S.; Isla, M. I.; Moreno, M. I. N.; Papotti, G.; Popova, M.; Santiago, K. B.; Salas, A.; Sawaya, A. C. H. F.; Schwab, N. V.; Sforcin, J. M.; Simone-Finstrom, M.; Spivak, M.; Trusheva, B.; Vilas-Boas, M.; Wilson, M.; Zampini, C. Standard Methods for Apis Mellifera Propolis Research. J. Apic. Res. 2019, 58 (2), 1–49. https://doi.org/10.1080/00218839.2016.1222661.

(9) Petreska Stanoeva, J.; Stefova, M.; Trusheva, B.; Popova, M.; Antonova, D.; Bankova, V. Comparison between Bulgarian and Macedonian Propolis: Chemical Composition and Plant Origin. Maced. Pharm. Bull. 2020, 66 (2), 11–14. https://doi.org/10.33320/maced.pharm.bull.2020.66.02.002.

(10) Gardana, C.; Simonetti, P. Evaluation of Allergens in Propolis by Ultra-Performance Liquid Chromatography/Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2011, 25 (11), 1675–1682. https://doi.org/10.1002/rcm.5025.

(11) Medana, C.; Carbone, F.; Aigotti, R.; Appendino, G.; Baiocchi, C. Selective Analysis of Phenolic Compounds in Propolis by HPLC-MS/MS. Phytochem. Anal. 2008, 19 (1), 32–39. https://doi.org/10.1002/pca.1010.

(12) Rendueles, E.; Mauriz, E.; Sanz-Gómez, J.; González-Paramás, A. M.; Vallejo-Pascual, M. E.; Adanero-Jorge, F.; García-Fernández, C. Biochemical Profile and Antioxidant Properties of Propolis from Northern Spain. Foods 2023, 12 (23), 1–16. https://doi.org/10.3390/foods12234337.

(13) Falcão, S. I.; Vale, N.; Gomes, P.; Domingues, M. R. M.; Freire, C.; Cardoso, S. M.; Vilas-Boas, M. Phenolic Profiling of Portuguese Propolis by LC-MS Spectrometry: Uncommon Propolis Rich in Flavonoid Glycosides. Phytochem. Anal. 2013, 24 (4), 309–318. https://doi.org/10.1002/pca.2412.

(14) Falcão, S. I.; Vilas-Boas, M.; Estevinho, L. M.; Barros, C.; Domingues, M. R. M.; Cardoso, S. M. Phenolic Characterization of Northeast Portuguese Propolis: Usual and Unusual Compounds. Anal. Bioanal. Chem. 2010, 396 (2), 887–897. https://doi.org/10.1007/s00216-009-3232-8.

(15) Kasiotis, K. M.; Anastasiadou, P.; Papadopoulos, A.; Machera, K. Revisiting Greek Propolis: Chromatographic Analysis and Antioxidant Activity Study. PLoS One 2017, 12 (1), 1–27. https://doi.org/10.1371/journal.pone.0170077.

(16) Ristivojević, P.; Trifković, J.; Gašić, U.; Andrić, F.; Nedić, N.; Tešić, Ž.; Milojković-Opsenica, D. Ultrahigh-Performance Liquid Chromatography and Mass Spectrometry (UHPLC-LTQ/Orbitrap/MS/MS) Study of Phenolic Profile of Serbian Poplar Type Propolis. Phytochem. Anal. 2015, 26 (2), 127–136. https://doi.org/10.1002/pca.2544.

(17) Gardana, C.; Scaglianti, M.; Pietta, P.; Simonetti, P. Analysis of the Polyphenolic Fraction of Propolis from Different Sources by Liquid Chromatography-Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2007, 45 (3), 390–399. https://doi.org/10.1016/j.jpba.2007.06.022.

(18) Papotti, G.; Bertelli, D.; Bortolotti, L.; Plessi, M. Chemical and Functional Characterization of Italian Propolis Obtained by Different Harvesting Methods. J. Agric. Food Chem. 2012, 60 (11), 2852–2862. https://doi.org/10.1021/jf205179d.

(19) Özkök, A.; Keskin, M.; Tanuğur Samancı, A. E.; Yorulmaz Önder, E.; Takma, Ç. Determination of Antioxidant Activity and Phenolic Compounds for Basic Standardization of Turkish Propolis. Appl. Biol. Chem. 2021, 64 (1). https://doi.org/10.1186/s13765-021-00608-3.

(20) Woźniak, M.; Sip, A.; Mrówczyńska, L.; Broniarczyk, J.; Waśkiewicz, A.; Ratajczak, I. Biological Activity and Chemical Composition of Propolis from Various Regions of Poland. Molecules 2023, 28 (1). https://doi.org/10.3390/molecules28010141.

(21) Saftić, L.; Peršurić, Ž.; Fornal, E.; Pavlešić, T.; Kraljević Pavelić, S. Targeted and Untargeted LC-MS Polyphenolic Profiling and Chemometric Analysis of Propolis from Different Regions of Croatia. J. Pharm. Biomed. Anal. 2019, 165, 162–172. https://doi.org/10.1016/j.jpba.2018.11.061.

(22) Dezmirean, D. S.; Paşca, C.; Moise, A. R.; Bobiş, O. Plant Sources Responsible for the Chemical Composition and Main Bioactive Properties of Poplar-Type Propolis. Plants 2021, 10 (1), 1–20. https://doi.org/10.3390/plants10010022.

(23) Ristivojević, P.; Trifković, J.; Andrić, F.; Milojković-Opsenica, D. Poplar-Type Propolis: Chemical Composition, Botanical Origin and Biological Activity. Nat. Prod. Commun. 2015, 10 (11), 1869–1876. https://doi.org/10.1177/1934578x1501001117.

(24) Kurek-Górecka, A.; Keskin, Ş.; Bobis, O.; Felitti, R.; Górecki, M.; Otręba, M.; Stojko, J.; Olczyk, P.; Kolayli, S.; Rzepecka-Stojko, A. Comparison of the Antioxidant Activity of Propolis Samples from Different Geographical Regions. Plants 2022, 11 (9), 1–17. https://doi.org/10.3390/plants11091203.

(25) Bankova, V.; Popova, M.; Trusheva, B. New Emerging Fields of Application of Propolis. Maced. J. Chem. Chem. Eng. 2016, 35 (1), 1–11. https://doi.org/10.20450/mjcce.2016.864.

Downloads

Additional Files

Published

2024-05-10 — Updated on 2024-05-22

Versions

How to Cite

Petreska Stanoeva, J., Stojchevski, C. ., Bankova, V. ., & Stefova, M. (2024). Phenolic fingerprint of Macedonian propolis . Macedonian Journal of Chemistry and Chemical Engineering, 43(1), 87–98. https://doi.org/10.20450/mjcce.2024.2862 (Original work published May 10, 2024)

Issue

Section

Natural Products

Most read articles by the same author(s)

> >>