HPLC-DAD-ESI/MS Monitoring of Stilbenes Content in Vranac Red Wines Produced with Traditional and Modern Fermentation Methods
DOI:
https://doi.org/10.20450/mjcce.2020.1970Keywords:
stilbenes, fermentation, enological additions, Vranac, HPLC-ESI-MSAbstract
Quantification of stilbenes was performed on Vranac wines (vintage 2008 and 2009) produced by traditional and modern fermentation methods, applying different enological additions (enzyme, oak chips and grape tannins). Stilbenes, trans-resveratrol and trans-resveratrol-3-glucoside were determined using the HPLC/DAD/ESI-MS and MS/MS technique. Trans-resveratrol ranged from 0.09 to 3.3 mg/L and the trans-resveratrol-3-glucoside was present in a range of 1.13 to 2.6 mg/L. The influence of vintage, fermentation tanks and enological additions was noticed on the content of stilbenes. Wines from vintage 2008 presented higher amount of stilbenes (on average: 1.89 mg/L) compared to the wines from 2009 (on average: 1.59 mg/L) probably because of the difference in the temperature and humidity in both years. Application of modern fermentation tanks (Sifa and Ganimede) followed by additions of enzyme, oak chips and grape tannins resulted in a higher amount of stilbenes. PCA presented grouping of wines according to the applied fermentation method.References
D. O. Adams, Phenolics and ripening in grape berries, Am. J. Enol. Vitic. 57, 249−256 (2006).
V. Ivanova-Petropulos, I. Hermosín-Gutiérrez, B. Boros, M. Stefova, T. Stafilov, B. Vojnoski, Á. Dörnyei, F. Kilár Phenolic compounds and antioxidant activity of Macedonian red wines, J.Food.Comp.Anal. 41, 1-14 (2015), doi:10.1016/j.jfca.2015.01.002.
M. Atanackovic, A. Petrovic, S. Jovic, L. Gojkovic-Bukarica, M. Bursac, J. Cvejic, Influence of wine making techniques on the resveratrol content, total phenolic content and antioxidant potential of red wines, Food Chem. 131, 513–518 (2012), doi:10.1016/j.foodchem.2011.09.015.
P. Langcake, R.J. Pryce, The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury, Physiol. Plant Pathol. 9, 77–86 (1976).
P. Langcake, Disease resistance of Vitis spp. and the production of the stress metabolites resveratrol, ɛ-viniferin, α-viniferin and pterostilbene, Physiol. Plant Pathol. 18, 213–226 (1981).
B. S. Sun, A. M. Ribes, M. C. Leandro, A. P. Belchior, M. I. Spranger, Stilbenes: quantitative extraction from grape skins, contribution of grape solids to wine and variation during wine maturation, Anal.Chim.Acta, 563, 382–390 (2006), doi:10.1016/j.aca.2005.12.002.
R. Pezet, Ph. Cuenat, Resveratrol in wine: extraction from skin during fermentation and post-fermentation standing of must from Gamay grapes, Am. J. Enol. Vitic. 47, 287–290 (1996).
L. Bavaresco, E. Cantu, M. Fregoni, M. Trevisan, Constitutive stilbene contents of grapevine cluster stems as potential source of resveratrol in wine, Vitis, 36(3), 115-118 (1997).
A. Roldán, V. Palacios, I. Caro, L. Pérez, Resveratrol Content of Palomino fino Grapes: Influence of Vintage and Fungal Infection, J. Agric. Food Chem. 51, 1464–1468 (2003), doi:10.1021/jf020774u.
R. T. Threlfall, J. R. Morris, A. Mauromoustakos, Effect of variety, ultraviolet light exposure, and enological methods on the trans-resveratrol level of wine, Am. J. Enol. Vitic. 50(1), 57-64 (1999).
F. Mattivi, Solid-phase extraction of trans-resveratrol from wines for HPLC analysis, Z. Lebensm. Unters. Forsch. 196(6), 522–525 (1993).
D. M. Goldberg, J. Yan, E. Ng, E. P. Diamandis, A. Karumanchiri, G. Soleas, A. L. Waterhouse, A global survey of trans-resveratrol concentrations in comercial wines, Am. J. Enol. Vitic. 46, 159–165 (1995).
V. Vacca, L. Leccis, P. Fenu, L. Pretti, G.A. Farris, Wine yeasts and resveratrol content, Biotech. Lett. 19, 497–498 (1997).
U. Vrhovsek, S. Wendelin, R. Eder, Effects of various vinification techniques on the concentration of cis- and trans-resveratrol and resveratrol glucoside isomers in wine, Am. J. Enol. Vitic. 48, 214–219 (1997).
A. Gambuti, D. Strollo, A. Erbaggio, L. Lecce, L. Moio, Effect of winemaking practices on color indexes and selected bioactive phenolics of Aglianico wine, J. Food Sci. 72(9), S623–S628. (2007), doi:10.1111/j.1750-3841.2007.00536.x.
G. González-Neves, G. Favre, G. Gil, M. Ferrer, D. Charamelo, Effect of cold pre-fermentative maceration on the color and composition of young red wines cv. Tannat., J. Food Sci. Tech. Mys. 52, 3449–3457 (2015), doi:10.1007/s13197-014-1410-y.
V. Ivanova, B. Vojnoski, M. Stefova, Effect of winemaking treatment and wine aging on phenolic content in Vranec wines, J. Food Sci. Technol. 49(2), 161-172 (2012), doi: 10.1007/s13197-011-0279-2.
V. Ivanova-Petropulos, S. Durakova, A. Ricci, G.P. Parpinello, A. Versari, Extraction and evaluation of natural occurring bioactive compounds and change in antioxidant activity during red winemaking, J. Food Sci. Technol. 53 (6), 2634–2643 (2016), doi: 10.1007/s13197-016-2235-7.
G. L. La Torre, G. Laganà, E. Bellocco, F. Vilasi, F. Salvo, G. Dugo, Improvement on enzymatic hydrolysis of resveratrol glucosides in wine, Food Chem. 85, 259–266 (2004), doi:10.1016/j.foodchem.2003.06.019.
J. D. Wightman, S. F. Price, B. T. Watson, R. E. Wrolstad, Some effects of processing enzymes on anthocyanins and phenolics in Pinot noir and Cabernet Sauvignon wines, Am. J. Enol. Vitic. 48, 39-48 (1997).
M. Urpi-Sarda, O. Jauregui, R. M. Lamuela-Raventos, W. Jaeger, M. Miksits, M. I. Covas, C. Andres-Lacueva, Uptake of diet resveratrol into the human low-density lipoprotein. Identification and quantification of resveratrol metabolites by liquid chromatography coupled with tandem mass spectrometry, Anal. Chem. 10, 3149–3155 (2005). doi:10.1021/ac0484272.
M. Virgili, A. Contestabile, Partial neuroprotection of in vivo excitotoxic brain damage by chronic administration of the red wine antioxidant agent, trans-resveratrol in rats, Neurosci. Lett. 281(2–3), 123–126 (2000).
M. Jang, L. Cai, G. O. Udeani, K. V. Slowing, C. F. Thomas, C. W. Beecher, Cancer chemopreventive activity of resveratrol, a natural product derived from grapes, Science, 275, 218–220 (1997).
R. Pajovic, D. Raicevic, T. Popovic, P. Sivilotti, K. Lisjak, A. Vanzo, Polyphenolic Characterisation of Vranac, Kratosija and Cabernet Sauvignon (Vitis vinifera L. cv.) grapes and wines from different vineyard locations in Montenegro, S. Afr. J .Enol. Vitic. 35(1), 134-143 (2014).
D. Raicevic, S. Mijovic, T. Popovic, R. Pajovic-Scepanovic, Phenolic compounds of red wines in Podgorica subregion (Montenegro), Agricult. Forest. 61(4), 359-368 (2015), doi:10.17707/AgricultForest.
D. Raicevic, Z. Bozinovic, M. Petkov, V. Ivanova-Petropulos, V. Kodzulovic, M. Mugosa., S. Sucur, V. Maras, Polyphenolic content and sensory profile of Montenegrin Vranac wines produced with different oenological products and maceration, Maced. J. Chem. Chem. Eng. 36(2), 229–238 (2017),doi: 10.20450/mjcce.2017.1145.
MONSTAT-Statistical Office of Montenegro, Statistical Yearbook. MONSTAT, Podgorica (2009).
MONSTAT-Statistical Office of Montenegro, Statistical Yearbook. MONSTAT, Podgorica (2010).
V. Ivanova, Á. Dörnyei, L. Márk, B. Vojnoski, T. Stafilov, M. Stefova, F. Kilár, Polyphenolic content of Vranec wines produced by different vinification conditions, Food Chem. 124(1), 316-325. (2011),doi:10.1016/j.foodchem.2010.06.039.
R. Pajović Šćepanović, S. Wendelin, D. Raičević, E. Reinhard, Characterization of the phenolic profile of commercial Montenegrin red and white wines, Eur. Food Res. Techn. 245, 2233–2245 (2019), doi.org/10.1007/s00217-019-03330-z.
R. Pajović-Šćepanović, S. Wendelin, E. Reinhard, Phenolic composition and varietal discrimination of Montenegrin red wines (Vitis vinifera var. Vranac, Kratošija, and Cabernet Sauvignon), Eur. Food Res. Techn. 244 (12), 2243–2254. (2018), doi: 10.1007/s00217-018-3133-1.
S. Kostadinovic, A. Wilkens, M. Stefova, V. Ivanova, B. Vojnoski, H. Mirhosseini, P. Winterhalter, Stilbene levels and antioxidant activity of Vranec and Merlot wines from Macedonia: Effect of variety and enological practices, Food Chem. 135, 3003–3009 (2012), doi: 10.1016/j.foodchem.2012.06.118.
F. Buiarelli, F. Coccioli, R. Jasionowska, M. Merolle, A. Terracciano, Analysis of some stilbenes in Italian wines by liquid chromatography/tandem mass spectrometry, Rapid Commun. Mass. Spectrom. 21, 2955–2964 (2007), doi:10.1002/rcm.3174.
X. Vitrac, A. Bornet, R. Vanderlinde, J. Valls, T. Richard, J. C. Delaunay, J. M. Mrillon, P. L. Teissdre, Determination of stilbenes (trans-viniferin, trans-astringin, trans-piceid, cis- and trans-resveratrol, cis-viniferin) in Brazilian Wines, J. Agric. Food Chem. 14, 5664-5669 (2005), doi:10.1021/jf050122g.
U. Stervbo, O. Vang, C. Bonnesen, A review of the content of the putative chemopreventive phytoalexin resveratrol in red wine, Food Chem. 101, 449–457 (2007), doi:10.1016/j.foodchem.2006.01.047.
L. Bavaresco, S.Pezzutto, F. Ferrari, Role of environmental and cultural factors on resveratrol content in grapes and wine, Italus Hortus, 74(3), 191-194 (2007).
T. Garde-Cerdán, I. Jarauta, S. M. Rosario, C. Ancín-Azpilicueta, Comparative study of the volatile composition in wines obtained from traditional vinification and from the Ganimede method, J. Sci. Food Agric. 88(10), 1777-1785 (2008), doi: 10.1002/jsfa.3280.
E. S. Va´zquez, S. R. Segade, I. O. Ferna´ndez, Effect of the winemaking technique on phenolic composition and chromatic characteristics in young red wines, Eur. Food Res. Techn. 231, 789-802. (2010), doi: 10.1007/s00217-010-1332-5.
G. Favre, Á. Peña-Neira, C. Baldi, N. Hernández, S. Traverso, G. Gil, G. González-Neves, Low molecular-weight phenols in Tannat wines made by alternative winemaking procedures, Food Chem. 158, 504–512 (2014), doi:10.1016/j.foodchem.2014.02.173.