Spectrofluorimetric determination of quercetin in pharmaceutical dosage forms
DOI:
https://doi.org/10.20450/mjcce.2014.496Keywords:
Quercetin, flavonoids, spectrofluorimetric determination, RP-HPLC, capsulesAbstract
The simple, accurate and precise method based on fluorescence properties of aluminium (III)–quercetin complex, for the determination of quercetin has been developed and validated. The complex has strong emission at pH 3.30, lem = 480 nm, with lex = 420 nm. Linearity range of quercetin determination was 1.5 - 60.5 ng mL-1 with LOD 0.09 ng mL-1 and LOQ 0.27 ng mL-1. Recovery values in the range of 99.9 – 100.2 % indicate a good accuracy of the method. The established method was applied for the determination of quercetin in capsules, with Recovery value 98.3 %, standard deviation 0.22 % and coefficient of variation 0.09 %.
The reliability of the method was checked by RP-HPLC/UV method for capsules with direct determination of quercetin after separation. The good agreement between two methods indicates the applicability usability of the proposed spectroflurometric method for quercetin determination in pharmaceutical dosage forms, with high reproducibility, and enables direct and simple determination without its prior extraction from samples.
The proposed spectrofluorimetric method has much better sensitivity and about 1000 times lower LOD and LOQ values compared to data reported in literature.
References
S. Wang, K. Huang, Determination of flavonoids by high-performance liquid chromatography and capillary electrophoresis, J. Chromatogr. A, 1032, 273-279 (2004).
J. Spencer, Flavonoids: modulators of brain function?, Br. J. Nutr., 99, 60-77 (2008).
M.G. Hertog, P.C. Hollman, M. Katan, D. Kromhout, Intake of potentially anticarcinogenic flavonoids and their determinants in adults in the Netherlands, Nutr. Cancer 20, 21-29 (1993).
V. Kuntić, S. Blagojević, V. Vukojević, D. Malešev, Z. Radović, Spectrophotometric investigation of the Pd(II)-quercetin complex in 50% ethanol, Monatshefte fűr Chemie, 129, 41-48 (1998).
D. Kostić, G. Miletić, S. Mitić, I. Rašić, V. Živanović, Spectrophotometric determination of microamounts of quercetin on its complexation with copper(II), Chem. Pap., 61, 73-76 (2007).
S. Birjees Bukhari, S. Memon, M. Mahroof-Tahir, M.I. Bhanger, Synthesis, characterization and antioxidant activity copper–quercetin complex, Spectrochim. Acta Part A 71, 1901–1906 (2009).
S. Birjees Bukhari, S. Memon, M. Mahroof-Tahir, M. Bhanger, Synthesis, characterization and investigation of antioxidant activity of cobalt–quercetin complex, J. Molec. Struct. 892, 39–46 (2008).
R. Frederice, A. Ferreira, M. Gehlen, Molecular fluorescence in silica particles doped with quercetin-Al3+ complexes, J. Braz. Chem. Soc., 21, 1213-1217 (2010).
C. Kandaswami, E. Jr. Middleton, Free radical scavenging and antioxidant activity of plant flavonoids. Adv. Exp. Med. Biol., 366, 351-376 (1994).
W. Bors, W. Heller, C. Michel, M. Saran, Flavonoids as antioxidants: determination of radical-scavenging efficiencies, Methods Enzymol., 186, 343-355 (1990).
C. De Whalley, S. Rankin, J. Hoult, W. Jessup, D. Leake, Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages, Biochem. Pharmacol., 39, 1743-1750 (1990).
M. Navab, J. Berliner, A. Watson, S. Hama, M. Territo, A. Lusis, D. Shih, B. van Lenten, J. Frank, L. Demer, P. Edwards, A. Fogelman, The Yin and Yang of oxidation in the development of the fatty streak, Arterioscler. Thromb. Vase. Biol., 16, 831-842 (1996).
F. Wang, T. Yao, S. Zeng, Determination of quercetin and kaempferol in human urine after orally administrated tablet of ginkgo biloba extract by HPLC, J. Pharm. Biomed. Anal., 33, 317-321 (2003).
K. Ishii, T. Furuta, Y. Kasuya, High-performance liquid chromatographic determination of quercetin in human plasma and urine utilizing solid-phase extraction and ultraviolet detection, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 794, 49-56 (2003).
S. Wang S, D. Di, X. Liu, S. Jiang, Determination of luteolin and quercetin in the capsule of Lamiophlomis Rotata (Benth.) Kudo by HPLC coupled with weighted least squares linear regression. J. Liq. Chromatog. Rel. Technol., 30, 1991-1999 (2007).
Y. Zheng, L. Ye, L. Yan, Y. Gao, The electrochemical behavior and determination of quercetin in choline chloride/urea deep eutectic solvent electrolyte based on abrasively immobilized multi-wall carbon nanotubes modified electrode, Int. J. Electrochem. Sci., 9, 238 - 248 (2014).
L. Wang, ME. Morris, Liquid chromatography-tandem mass spectroscopy assay for quercetin and conjugated quercetin metabolites in human plasma and urine, J. Chromatogr. B, 821, 194-201 (2005).
N. Pejić, V. Kuntić, Z. Vujić, S. Mićić, Direct spectrophotometric determination of quercetin in the presence of ascorbic acid, Il Farmaco, 59, 21–24 (2004).
V. Kuntić, N. Pejić, S. Mićić, V. Vukojević, Z. Vujić, D. Malešev, Determination of quercetin in pharmaceutical formations via its reaction with potassium titanyloxalate. Determination of the stability constants of the quercetin titanyloxalato complex, J. Serb. Chem. Soc., 70, 753–763 (2005).
G.J.Volikakis, C.E. Efstathiou, Fast screening of total flavonols in wines, tea-infusions and tomato juice by flow injection/adsorptive stripping voltammetry, Anal. Chim. Acta 551, 124–131 (2005).
S.U. Rakesh, P.R. Patil, V.R. Salunkhe, P.N. Dhabale, K.B. Burade, HPTLC method for quantitative determination of quercetin in hydroalcoholic extract of dried flower of nymphaea stellata willd, Int. J. ChemTech Res., 1, 931-936 (2009).
M. Shaghaghi, J.L. Manzoori, A. Jouyban. Determination of total phenols in tea infusions, tomato and apple juice by terbium sensitized fluorescence method as an alternative approach to the Folin–Ciocalteu spectrophotometric method, Food Chem., 108, 695–701 (2008).
M. Oman, M. Škerget, Ž. Knez, Application of supercritical fluid extraction for the separation of nutraceuticals and other phytochemicals from plant material, Maced. J. Chem. Chem. Eng., 32, 183–226 (2013).
D. Perrin, B. Dempsey, Buffers for pH and Metal Ion Control; Chapman and Hall, London, 1974, pp 77-94.
Validation of analytical procedures: Methodology, ICH Guideline Q2B. 1997, Federal
Register 62, No. 96, 27463–27467.
J. Miller, J. Miller, In Statistics and Chemometrics for Analytical Chemistry, 5th edn. Pearson Education Ltd., London, 2005, p. 121.
J. Inczédy, Analytical applications of complex equilibria, Horwood and Willy, New York, 1976 p. 137.
D. Malešev, Z. Radović, M. Jelikić-Stankov, Investigation of europium (III)-rutin complex in water-ethanolic solution, Spectrosc. Lett., 26, 1985-1995 (1993).
Downloads
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.