Spectrophotometric determination of quercetin using micelles of cetyltrimethylammonium bromide in a low ratio methanol–water mixture

Authors

DOI:

https://doi.org/10.20450/mjcce.2024.2871

Keywords:

dietary supplements, Quercetin, cetyltrimethylammonium bromide micelles, Spectrophotometry

Abstract

A simple and achievable UV-Vis spectrophotometric method for the micro-quantitative determination of quercetin has been developed and validated. This method relies on the formation of supramolecular assemblies of quercetin (QR) and the cationic surfactant cetyltrimethylammonium bromide (CTAB) in a 5 % methanolic aqueous solution. In this solvent medium, CTAB in the presence of QR has a critical micelle concentration of 1.2·10-3 mol l-1 at 24 °C, determined through conductometry. Important analytical parameters such as wavelength, composition of methanol-water mixture, CTAB concentration (cCTAB), and pH were optimized. Under the optimum experimental conditions (l = 397 nm, 5 % methanol as solvent, cCTAB = 2.0·10-3 mol l-1, and pH = 6.0), Beer's law was valid for QR concentrations up to 16.9 mg ml-1. The Ringbom optimum QR concentration range was 1.0 - 16.9 mg ml-1. The method sensitivity was 2.03·104 l mol-1 cm-1 (the molar absorptivity) and 0.13 mg ml-1 (limit of detection). The applicability of the proposed method for quantifying QR in pharmaceutical formulations was demonstrated. Furthermore, the proposed UV-Vis spectrophotometric method was successfully applied to the reliably assay of QR, even in the presence of vitamin C.

References

(1) Panche, A. N.; Diwan, A. D.; Chandra, S. R., Flavo-noids: an overview. J. Nutr. Sci. 2016, 5, e47, 1–15. https://doi.org/10.1017/jns.2016.41

(2) Sharma, A.; Kashyap, D.; Sak, K.; Tuli, H. S.; Shar-ma, A. K., Therapeutic charm of quercetin and its de-rivatives: a review of research and patents. Pharm. Pat. Anal. 2018, 7 (1), 15–32.

https://doi.org/10.4155/ppa-2017-0030

(3) Pavun, L., Janošević Ležaić, A., Tanasković, S., Ušjak, D., Milenković, M., Uskoković-Marković, S., Antioxidant capacity and antimicrobial effects of zinc complexes of flavonoids – Does synergism ex-ist? Maced. J. Chem. Chem. Eng. 2021, 40 (2), 231–239.

https://doi.org/10.20450/mjcce.2021.2401

(4) Wang, L.; Song, J; Liu, A.; Xiao; B.; Li, S.; Wen, Z.; Lu, Y.; Du, G., Research progress of the antiviral bi-oactivities of natural flavonoids. Nat. Prod. Bio-prospect. 2020, 10, 271–283.

https://doi.org/10.1007%2Fs13659-020-00257-x

(5) Glinsky, G. V., Mitigation agents: vitamin D, querce-tin, and estradiol manifest properties of medicinal agents for targeted mitigation of the COVID-19 pan-demic defined by genomics-guided tracing of SARS-CoV-2 targets in human cells. Biomedicines 2020, 8 (5), 129–155.

https://doi.org/10.3390%2Fbiomedicines8050129

(6) Gu, Y.-Y; Zhang, M.; Cen, H.; Wu, Y.-F; Lu, Z.; Lu, F.; Liu, X.-S.; Lan, H.-Y., Quercetin as a potential treatment for COVID-19-induced acute kidney inju-ry: Based on network pharmacology and molecular docking study. PLOS ONE, 2021, 16 (1), 1–17.

https://doi.org/10.1371%2Fjournal.pone.0245209

(7) Flavonoids: Chemistry, Biochemistry and Applica-tions, 1st ed.; Andersen, O. M., Markham, K. R. (Eds.). Taylor Francis, Boca Raton, Florida, 2005.

https://doi.org/10.1201/9781420039443

(8) Middleton, E. Jr.; Kandaswami, C., The impact of plant flavonoids on mammalian biology: implications for immunity, inflammation, and cancer, In: The Fla-vonoids. Advances in Research Since 1986, Har-borne, J. B. (Ed.). Chapman & Hall, London, 1994, pp. 619–652.

(9) Lakhanpal, P.; Kumar Rai, D., Quercetin: a versatile flavonoid. Internet Journal of Medical Update 2007, 2 (2), 22–37. https://doi.org/10.4314/ijmu.v2i2.39851

(10) Bischoff, S. C., Quercetin: potentials in the preven-tion and therapy of disease. Curr. Op. Clin. Nutr. Metab. Care 2008, 11, 733–740.

http://dx.doi.org/10.1097/MCO.0b013e32831394b8

(11) Hajji, H. E.; Nkhili, E.; Tomao, V.; Danglas, O., In-teractions of quercetin with iron and copper ions: complexation and autoxidation. Free. Rad. Res. 2006, 40 (3), 303 – 320.

https://doi.org/10.1080/10715760500484351

(12) Chen, C.; Zhou, J.; Ji, C., Quercetin: a potential drug to reverse multidrug resistance. Life Sci. 2010, 87 (11 – 12), 333 – 338.

https://doi.org/10.1016/j.lfs.2010.07.004

(13) Kaul, T.; Middleton, E.; Ogra, P., Antiviral effect of flavonoids on human viruses. J. Med. Virol. 1985, 15 (1), 71–79. https://doi.org/10.1002/jmv.1890150110

(14) Özçelik, B.; Kartal, M.; Orhan, I., Cytotoxicity, anti-viral and antimicrobial activities of alkaloids, flavo-noids, and phenolic acids. Pharm. Biol. 2011, 49 (4), 396–402. https://doi.org/10.3109/13880209.2010.519390

(15) Nair, M. P. N.; Kandaswami, C.; Mahajan, S.; Chadha, K. C.; Chawda, R.; Nair, H.; Kumar, N.; Nair, R. E.; Schwartz, S. A., The flavonoid, querce-tin, differentially regulates Th-1 (IFN) and Th-2 (IL4) cytokine gene expression by normal peripheral blood mononuclear cells. Biochem. Biophys. Acta. 2002, 1593 (1), 29–36. https://doi.org/10.1016/s0167-4889(02)00328-2

(16) Agrawal, P. K.; Agrawal, C.; Blunden, G., Quercetin: antiviral significance and possible COVID-19 integra-tive considerations, Nat. Prod. Commun. 2020, 15 (12), 1–10. https://doi.org/10.1177/1934578X20976293

(17) Dmitrienko, S. G.; Kudrinskaya, V. A.; and Apyari, V. V., Methods of extraction, preconcentration, and determination of quercetin, J. Analyt. Chem. 2012, 67 (4), 299–311. http://dx.doi.org/10.1134/S106193481204003X

(18) Malešev, D.; Kuntić, V., Investigation of metal–flavonoid chelates and the determination of flavo-noids via metal–flavonoid complexing reactions. J. Serb. Chem. Soc. 2007, 72 (10), 921–939.

http://dx.doi.org/10.2298/JSC0710921M

(19) Pavun, L.; Đurđević, P.; Jelikić-Stankov, M.; Đika-no¬vić, D.; Ćirić, A.; Uskoković-Marković, S., Spec-trofluorimetric determination of quercetin in pharma-ceutical dosage forms. Maced. J. Chem. Chem. Eng. 2014, 33 (2), 209–215.

https://doi.org/10.20450/mjcce.2014.496

(20) Emilia, S.; Yetti, R. D.; Asra, R., Development and analysis of analytical methods for determination of catechins and quercetin in natural products: a review. Gal Int J Health Sci Res. 2020, 5 (3): 38–46.

(21) Pejić, N.; Kuntić, V.; Vujić, Z.; Mićić, S., Direct spec-trophotometric determination of quercetin in the presence of ascorbic acid. Il Pharmaco. 2004, 59, 21–24. https://doi.org/10.1016/j.farmac.2003.07.013

(22) Lombard, K. A.; Geoffriau, E.; Peffley, E., Flavonoid quantification in onion by spectrophotometric and high performance liquid chromatography analysis, hortscience 2002, 37 (4), 682–685.

http://dx.doi.org/10.21273/HORTSCI.37.4.682

(23) Liu, W.; Guo, R., The interaction between morin and CTAB aggregates. J. Colloid Interface Sci. 2005, 290 (2), 564–573.

https://doi.org/10.1016/j.jcis.2005.04.061

(24) Liu, W.; Guo, R., Interaction between flavonoid, quercetin and surfactant aggregates with different charges. J. Colloid Interface Sci. 2006, 302 (2), 625–632. http://dx.doi.org/10.1016/j.jcis.2006.06.045

(25) Alva-Ensastegui, J. C.; Palomar-Pardavé, M.; Romero-Romo, M.; Ramirez-Siolva, M.T., Quercetin spectrofluorometric quantification in aqueous media using different surfactants as fluorescence promoters, RCS Adv. 2018, 8, 10980-10986.

http://xlink.rsc.org/?DOI=c8ra01213j

(26) Mansour, F. R.; Abdallah, I. A.; Bedair, A.; Hamed, M., Analytical methods for the determination of quercetin and quercetin glycosides in pharmaceuti-cals and biological samples. Crit. Rev. Anal. Chem. 2023, 1–26. http://dx.doi.org/10.1080/10408347.2023.2269421

(27) Kuntić, V.; Malešev, D.; Radović, Z.; Vukojević, V., Spectrophotometric investigation of the complexing reaction between rutin and titanyloxalate anion in 50 % Ethanol. Monatsh. Chem. 2000, 131, 769–777.

(28) Goronja, J.; Janošević Ležaić, A.; Dimitrijević, B.; Malenović, A.; Stanisavljev, D.; Pejić, N., Determina-tion of critical micelle concentration of cetyltrime-thyl-ammonium bromide: Different procedures for analysis of experimental data. Hem. Ind. 2016, 70 (4), 485–492. https://doi.org/10.2298/HEMIND150622055G

(29) Jabeen, S.; Chat, O. A.; Rather, G. M.; Dash, A. A., Investigation of antioxidant activity of Quercetin (2-(3, 4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one) in aqueous micellar media. Food Re-search International. 2013, 51 (1), 294–302.

https://doi.org/10.1016/j.foodres.2012.12.022

(30) Abbot, V.; Sharma, P., Investigation of interactions between quercetin and Tween 80 through electrolyte induced thermodynamic approach. In: Materials To-day: Proceedings 2020, 28, 61–64.

(31) Taraba, A.; Szymczyk, K., Spectroscopic studies of the quercetin/rutin-nonionic surfactant interactions, Journal of Molecular Liquids 2022, 360, 119483.

https://doi.org/10.1016/j.molliq.2022.119483

(32) Vigneshwari, R.; Dash S., Comparative Interaction of flavonoid quercetin with different tween surfactants. ACS Food Sci. Technol. 2023, 3 (5), 969–980. http://dx.doi.org/10.1021/acsfoodscitech.3c00105

(33) Zsila, F.; Bikádi, Z.; Simonyi, M., Probing the binding of the flavonoid, quercetin to human serum albumin by circular dichroism, electronic absorption spectros-copy and molecular modelling methods. Biochemical Pharmacology 2003, 65 (3), 447456.

http://dx.doi.org/10.1016/S0006-2952(02)01521-6

(34) Singh, O.; Kaur, R.; Mahajan, R. K., Flavonoid-surfactant interactions: A detailed physicochemical study. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 2017, 170, 77–88.

http://dx.doi.org/10.1016/j.saa.2016.07.007

(35) International Conference on Harmonization (ICH) of Technical Requirements for the Registration of Pharmaceuticals for Human Use, Validation of ana-lytical procedures: Text and Methodology. ICH-Q2B,1996.

(36) Miller, J. N.; Miller, J. C., Statistics and Chemomet-rics for Analytical Chemistry, 5th ed. Pearson Educa-tion, London, 2005, p. 121.

(37) Boots, A. W.; Kubben, N.; Haenen, G. R. M. M.; Bast, A., Oxidized quercetin reacts with thiols rather than with ascorbate: implication for quercetin sup-plementation. Biochem. Biophys. Res. Commun. 2003, 308 (3) 560–565.

https://doi.org/10.1016/s0006-291x(03)01438-4

(38) Askal, H. F.; Saleh, G. A.; Backeet, E. Y., A selective spectrophotometric method for determination of quercetin in the presence of other flavonoids. Talan-ta. 1992, 39 (3), 259–263.

https://doi.org/10.1016/0039-9140(92)80030-h

(39) Kuntić, V.; Pejić, N.; Mićić, S.; Vukojević, V.; Vujić, Z., Determination of quercetin in pharmaceutical formations via its reaction with potassium titanyloxa-late. Determination of the stability constants of the quercetin titanyloxalato complex. J. Serb. Chem. Soc. 2005, 70(5) 753–763.

http://dx.doi.org/10.2298/JSC0505753K

(40) Kostić, D. A.; Miletić, G. Z.; Mitić; S. S.; Rašić I. D., and Zivanović, V. V., Spectrophotometric determina-tion of microamounts of quercetin based on its com-plexation with copper(II). Chem. Pap. 2007, 61(2), 73–76. http://dx.doi.org/10.2478/s11696-007-0001-z

(41) Kurzawa, M., Determination of quercetin and rutin in selected herbs and pharmaceutical preparations. Ana-lyt. Lett. 2010, 43 (6), 993–1002.

http://dx.doi.org/10.1080/00032710903491070

(42) Uskoković-Marković, S.; Milenković, M.; Pavun, L., Zinc-quercetin complex – from determination to bio-activity. Acta Agricult. Serb. 2020, 25 (50), 113–120. http://dx.doi.org/10.5937/AASer2050113U

(43) Patel, M. K.; Shah, S. K.; Tyagi, C. K.; Md. Rageeb Md. Usman, Method development and validation for estimation of quercetin using UV and RP-HPLC in bulk and formulation. Plant Archives 2020, 20, Suppl. 2, 4343–4347.

Downloads

Published

2024-12-04

How to Cite

Pavun, L., Mićić, S., Janošević Ležaić , A. ., Uskoković-Marković, S., & Pejić , N. (2024). Spectrophotometric determination of quercetin using micelles of cetyltrimethylammonium bromide in a low ratio methanol–water mixture. Macedonian Journal of Chemistry and Chemical Engineering, 43(2). https://doi.org/10.20450/mjcce.2024.2871

Issue

Section

Analytical Chemistry

Most read articles by the same author(s)