Crossroads of vibrational (infrared and Raman) spectroscopy and X-ray powder diffraction in identification and characterization of some minerals – advantages and limitations. A review


  • Petre Makreski Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Skopje
  • Ljupco Pejov Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Skopje; Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Norway; The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, AZ, USA
  • Gligor Jovanovski Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Skopje



vibrational spectroscopy, X-ray powder diffraction, advantages, limitations, minerals


Many analytical methods have been successfully employed for the study of minerals, in particular, vibrational infrared (FTIR) and Raman spectroscopies and X-ray powder diffraction (XRPD). The advantages of the vibrational spectroscopic techniques for identifying and characterizing minerals include: rapid and versatile use; qualitative and quantitative chemical signatures; distinctive chemical fingerprint of a material; indirect determination of the crystal features (polymorphism, isomorphism, coordination, degree of deformation of structural polyhedra); small sample quantity (area less than 1 μm2 for Raman); wide coverage of 4,000 – 50 cm−1 region in a single scan; in situ and direct measurements without sample preparation; nondestructive use; etc. On the other hand, XRPD is a destructive technique that, depending on the method used and the density of the material, requires from a few micrograms up to around 5 grams of sample quantity for analysis. In spite of that, it is a rapid and powerful technique used in mineral studies with relatively straightforward interpretation of the results. During the last decade, portable X-ray powder diffractometers for the nondestructive analysis of art and archeological materials have been developed along with the portable and hand-held vibrational spectroscopy instrument. Here, some advantages and limitations in the process of the complementary use of FTIR and Raman vibrational spectroscopy and XRPD for identification and characterization of minerals are outlined.


(1) Bish, D. L.; Post, J. E., Quantitative mineralogical analy-sis using the Rietveld full-pattern fitting method, Am. Mineral. 1993, 78, 932–940.

(2) Lavina, B.; Dera, P.; Downs, R. T., Modern X-ray dif-fraction methods in mineralogy and geosciences, Rev. Mineral. Geochem. 2014, 78, 1–31.

(3) Ali, A.; Chiang, Y. W.; Santos, R. M., X-ray diffraction techniques for mineral characterization: A review for en-gineers of the fundamentals, applications, and research di-rections, Minerals 2022, 12, 205.

(4) Farmer, V. C. (Ed.), The Infrared Spectra of Minerals, Mineralogical Society of Great Britain and Ireland, Lon-don, 1974.

(5) Griffith, G. P., Raman Spectroscopy of Minerals. In: The Infrared Spectra of Minerals; Farmer, V.C. (Ed.). Miner-alogical Society of Great Britain and Ireland, London, 1974, 119–135.

(6) McMillan, P. F.; Hofmeister, A. M., Infrared and Raman Spectroscopy. In: Spectroscopic Methods in Mineralogy and Geology; Hawthorne, F.C. (Ed.), De Gruyter, Berlin, 1988, 18, 99–160.

(7) Burgio, L.; Clark, R. J. H., Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pig-ments with visible excitation, Spectrochim. Acta Part A 2001, 57, 1491–1531.

(8) Madejová, J., FTIR techniques in clay mineral studies, Vib. Spectrosc. 2003, 31, 1–10.

(9) Jovanovski, G.; Makreski, P., Minerals from Macedonia. XXX. Complementary use of vibrational spectroscopy and X-ray powder diffraction for spectra-structural study of some cyclo-, phylo-, and tectosilicate minerals. A re-view. Maced. J. Chem. Chem. Eng. 2016, 35, 125–155.

(10) Yin, Y.; Yin, J.; Zhang, W.; Tian, H.; Hu, Z.; Ruan, M.; Xu, H.; Liu, L.; Yan, X.; Chen, D., FT-IR and micro-Raman spectroscopic characterization of minerals in high-calcium coal ashes, J. Energy Inst. 2018, 91, 389–396.

(11) Perkins, D., X-ray Diffraction and Mineral Analysis In: Mineralogy - Free Textbook for College-Level Mineralogy Courses, Second Edition, University of North Dakota, 2022. Available online:

(accessed on 5 April 2024)

(12) Kaneva, E.; Shendrick, R., Tinaksite and tokkoite: X-ray powder diffraction, optical, and vibrational properties, Crystals 2022, 12, 377.

(13) Allen, M., Advantages and disadvantages of Raman & Fourier transform infrared spectroscopy (FTIR) in the gemological field, American Gem Trade Association (AGTA), 2019, 2. Available online: (accessed on 5 April 2024)

(14) Moh, G. M.; Taylor, L. A., Laboratory techniques in experimental petrology, N. Jb. Miner. Mh. 1971, 450–459.

(15) Moh, G. H.; Gržetić, I., Thallium-containing mineral systems. Part II: Thallium and silver sulfosalts with appli-cations to polymetallic ores, Chem. Erde-Geochem. 1993, 53, 273-288.

(16) Runčevski, T.; Makreski, P.; Dinnebier, R. E.; Jo-vanovski, G., The crystal structure of symplesite, Z. Anorg. Allg. Chem. 2015, 641, 1207–1210.

(17) Vosko, S. H; Wilk, L.; Nusair, M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 1980, 58, 1200–1211.

(18) Hamman, D. R., Generalized norm-conserving pseudopo-tentials, Phys. Rev. B 1989, 40, 2980–2987.

(19) Kleinman, L.; Bylander, D. M., Efficacious form for model pseudopotentials, Phys. Rev. Lett. 1982, 48, 1425–1428.

(20) Lubin, M. I.; Bylaska, E. J.; Weare, J. H., Ab initio mo-lecular dynamics simulations of aluminum ion solvation in water clusters, Chem. Phys. Lett. 2000, 322, 447–453.

(21) Troullier, N.; Martins, J. L., Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 1991, 43, 1993–2006.

(22) Lutz, H. D; Haeuseler, H., Infrared and Raman spectra of inorganic solids–state of the art, Trends Appl. Spectrosc. 1998, 2, 59–88.

(23) Ocana, M; Serna, C. J., Variations of the infrared powder spectra of TiO2 and SnO2 (rutile) with polarization, Spec-trochim. Acta Part A 1991, 47, 765‒774.

(24) McDevitt, N. T.; Baun, W. L., Infrared absorption study of metal oxides in the low frequency region (700–240 cm−1), Spectrochim. Act, 1964, 20, 799‒808.

(25) Luxon, J. T.; Summitt, R., Interpretation of the infrared absorption spectra of stannic oxide and titanium dioxide (rutile) powders, J. Chem. Phys. 1969, 50, 1366‒1370.

(26) Serna, C. J.; Rendon, J. L.; Iglesias, J. E., Infrared sur-face modes in corundum-type microcrystalline oxides, Spectrochim. Acta Part A 1982, 38, 797–802.

(27) Makreski, P.; Jovanovski, G.; Kaitner, B.; Stafilov, T.; Boev, B.; Cibrev, D., Minerals from Macedonia. X. Sepa-ration and identification of some oxide minerals by FT IR spectroscopy, AAS, AES-ICP and powder XRD, N. Jb. Miner. Abh. 2004, 180, 215–243.

(28) Pejov, L.; Makreski, P.; Jovanovski, G., Temperature-dependent vibrational dynamics of rutile (TiO2) from mo-lecular dynamics simulations and two-dimensional corre-lation analysis techniques, Minerals 2024, 14, Article 118.

(29) Berry, L. G.; Thompson, R. M., X–ray Powder Data for Ore Minerals: The Peacock Atlas, Geological Society of America: Memoir 85, New York, 1962.

(30) Berry, L. G. (Ed.). Index (Inorganic) to the Powder Dif-fraction File, American Society for Testing and Materials, Philadelphia, 1972.

(31) Taylor, D. G.; Nenadic, C. M.; Crable, J. V., Infrared spectra for mineral identification, Amer. Ind. Hyg. Ass. J. 1970, 31, 100–108.

(32) Jovanovski, G.; Makreski, P.; Kaitner, B.; Šoptrajanov, B., Minerals from Macedonia. X-ray powder diffraction vs. vibrational spectroscopy in mineral identification, Contributions Sec. Math. Tech. Sci. MANU 2009, 30, 7–34.

(33) Makreski, P.; Jovanovski, G., Minerals from Macedonia. XXIII. Spectroscopic and structural characterization of schorl and beryl cyclosilicates, Spectrochim. Acta Part A 2009, 73, 460–467.

(34) Mashkovtsev, R. I.; Lebedev, A. S., Infrared spectroscopy of water in beryl, J. Struct. Chem. 1992, 33, 930–933.

(35) Charoy, B.; De Donato, P.; Barres, O.; Pinto-Coelho, C., Channel occupancy in an alkali-poor beryl from Serra Branca (Goias, Brazil): spectroscopic characterization, Am. Mineral. 1996, 81, 395–403.

(36) Makreski, P.; Stefov, S.; Pejov, L.; Jovanovski, G., Theo-retical and experimental study of the vibrational spectra of (para)symplesite and hornesite, Spectrochim. Acta Part A 2015, 144, 155–162.

(37) Moenke, M. Mineralspektren, Vol. II., Akademie-Verlag, Berlin, 1966.

(38) Rojo, J. M.; Mesa, J. L.; Pizarro, J. L.; Lezama, L.; Ar-riortua, M. I.; Rojo, T., Spectroscopic and magnetic study of the (Mg,M)3(AsO4)2·8H2O (M = Ni2+, Co2+) arse-nates, Mater. Res. Bull. 1996, 31, 925–934.

(39) Capitelli, F.; Chita, G.; Rosaria Ghiara, M.; Rossi, M., Crystal-chemical investigation of Fe3(PO4)2·8H2O vivi-anite minerals, Z. Kristallogr. 2012, 227, 92–101.

(40) Frost, R. L.; Martens, W.; Williams, P. A.; Kloprogge, J. T., Raman and infrared spectroscopic study of the vivi-anite-group phosphates vivianite, baricite and bobierrite, Miner. Mag. 2002, 66, 1063–1073.

(41) Chukanov, N. V.; Scholz, R.; Aksenov, S. M.; Rastsveta-eva, R. K.; Pekov, I. V.; Belakovskiy, D. I.; Krambrock, K.; Paniago, R.M.; Righi, A.; Martins, R. F.; Belotti, F. M.; Bermanec, V., Metavivianite, Fe2+Fe3+2(PO4)2(OH)2·6H2O: new data and formula revi-sion, Miner. Mag. 2012, 76, 725–741.

(42) Frost, R. L.; Martens, W.; Williams, P. A.; Kloprogge, J. T., Raman spectroscopic study of the vivianite arsenate minerals, J. Raman Spectrosc. 2003, 34, 751–759.

(43) Frost R. L., Raman and infrared spectroscopy of arse-nates of the roselite and fairfieldite mineral subgroups, Spectrochim. Acta Part A 2009, 71, 1788-1794.

(44) Martens, W. N.; Kloprogge, J. T.; Frost, R. L.; Rintoul, L., Single crystal Raman study of erythrite Co3(AsO4)2·8H2O, J. Raman Spectrosc. 2004, 35, 208–216.

(45) Frost, R. L.; Kloprogge, T.; Weier, M. L.; Martens, W. N.; Ding, Z.; Edwards, H. G. H., Raman spectroscopy of selected arsenates—implications for soil remediation, Spectrochim. Acta Part A 2003, 59, 2241–2246.

(46) Hanafi, Z. M.; Alzewel, K. A.; Ibrahim, E. M. H.; Abou Sekkina, M. M., Physico-chemical properties of M2VBN3VIB compounds: infrared absorption spectra meas-urement, J. Phys. Chem. 1975, 94, 291–295.

(47) Kato, M.; Onari, S.; Arai, T. Far infrared and Raman spectra in (As2S3)1-x(Sb2S3)x glasses, Jpn J. Appl. Phys. 1983, 22, 1382.

(48) Ewen, P. J. S.; Taylor, W., The low-temperature Raman spectra of pyrargyrite (Ag3SbS3), Solid State Commun. 1983, 45, 227‒230.

(49) Ewen, P. J. S.; Han, T.; Taylor, W., Temperature depend-ence of linewidths in the Raman spectrum of pyrargyrite (Ag3SbS3), Solid State Commun. 1984, 52, 1041‒1044.

(50) Minceva-Šukarova, B.; Jovanovski, G.; Makreski, P.; Soptrajanov, B.; Griffith, W. P.; Willis, R.; Grzetić, I. Vi-brational spectra of MIMIIIS2 synthetic minerals (MI = Tl or Ag, MIII = As or Sb), J. Mol. Struct. 2003, 651–653, 181–189.

(51) Mernagh, T.P.; Trudi, A. G., A laser Raman microprobe study of some geologically important sulphide minerals, Chem. Geol. 1993, 103, 113–127.

(52) Kharbish, S.; Libowitzky, E.; Beran, A., Raman spectra of isolated and interconnected pyramidal XS3 groups (X = Sb,Bi) in stibnite, bismuthinite, kermesite, stephanite and bournonite, Eur. J. Mineral. 2009, 21, 325–333.

(53) Shuai, X.; Shen, W., A facile chemical conversion synthe-sis of Sb2S3 nanotubes and the visible light-driven photo-catalytic activities, Nanoscale Res. Lett. 2012, 7, 199.

(54) Kadioglu, Y. K.; Ustundag, Z.; Deniz, K.; Yenikaya, C.; Erdogan, Y., XRF and Raman characterization of antimo-nite, Instrum. Sci. Technol. 2009, 37, 683–696.

(55) Kavinchan, J.; Thongtem, T.; Thongtem, S., Cyclic mi-crowave assisted syntheses of Sb2S3 twin flowers in so-lutions containing a template and splitting agent, Chalco-genide Lett. 2012, 9, 365–370.

(56) Makreski, P.; Petruševski, G.; Ugarković, S.; Jovanovski, G., Laser-induced transformation of stibnite (Sb2S3) and other structurally related salts, Vib. Spectrosc. 2013, 68, 177–182.

(57) Boffa Ballaran, T.; Carpenter, M. A.; Geiger, G. A.; Koziol, A. M., Local structural heterogeneity in garnet solid solutions, Phys. Chem. Minerals, 1999, 26, 554–569.

(58) Moenke, H., Mineralspektren, Vol. I, Academie-Verlag, Berlin, 1962.

(59) Moore, R. K.; White W. B.; Long, T. V., Vibrational spec-tra of the common silicates. 1. The garnets. Am. Mineral. 1971, 56, 54–71.

(60) Hofmeister, A. M.; Chopelas, A., Vibrational spectrosco-py of end-member silicate garnets, Phys. Chem. Minerals 1991, 17, 503–526.

(61) Griffith, W. P., Raman studies on rock-forming minerals. Part I. Orthosilicates and cyclosilicates, J. Chem. Soc. A 1969, 1372–1377.

(62) Kolesov, B. A. Geiger, C. A., Raman scattering in silicate garnets: an investigation of their resonance intensities J. Raman Spectrosc., 1997, 28, 659–662.<659::AID-JRS156>3.0.CO;2-7

(63) Kolesov, B. A.; Geiger, C. A., Raman spectra of silicate garnets, Phys. Chem. Minerals 1998, 25, 142–151.

(64) Calligaro, T.; Colinart, S.; Poirot, J.-P.; Sudres, C., Com-bined external-beam PIXE and µ-Raman characterisation of garnets used in Merovingian jewellery, Nucl. Instr. Meth. Phys. Res. Part B 2002, 189, 320–327.

(65) Makreski, P.; Jovanovski, G.; Runčevski, T.; Jaćimović, R., Simple and efficient method for detection of traces of rare earth elements in minerals by Raman spectroscopy instrumentation, Maced. J. Chem. Chem. Eng. 2011, 30, 241–250.

(66) Dyer, C. D.; Hendra, P. J., The Raman spectroscopy of cement minerals under 1064 nm excitation, Spectrochim. Acta Part A, 1993, 49, 715–722.

(67) Varetti, E. L.; Baran, E. J., Raman or fluorescence spec-tra? About the use of FT-Raman techniques on inorganic compounds, Appl. Spectrosc. 1994, 48, 1028–1029.

(68) Aminzadeh, A., Fluorescence bands in the FT-Raman spectra of some calcium minerals, Spectrochim. Acta Part A, 1997, 53, 693–697.

(69) Tsuda, H.; Arias, J. L.; Leon, B.; Arends, A., Necessary precautions in the Raman analysis of calcium phosphate minerals using 1.06 Mu M YAG laser excitation, J. Anal. Chem. 1998, 52, 1122–1126.

(70) Aminzadeh, A.; Shahabi, S.; Walsh, L. J., Raman spectro-scopic studies of CO2 laser-irradiated human dental enamel, Spectrochim. Acta Part A, 1999, 55, 1303–1308.

(71) Aminzadeh, A.; Meskinfarm, M.; Tayyary, S. F., Laser induced fluorescence bands in the FT-Raman spectra of bioceramics, Spectrochim. Acta Part A, 2007, 66, 199–205.

(72) Lueth, V., Light sensitive minerals. In: 39th Annual New Mexico Mineral Symposium Abstracts, Socorro, New Mexico, 2018, pp. 34–35.

(73) Royce, K.; Baars, C., Caring for geological collections: unresolved questions. J. Nat. Sci. Collect. 2021, 8, 28–38.

(74) Gliozzo, E.; Burgio, L., Pigments — arsenic-based yel-lows and reds, Archaeol. Anthropol. Sci. 2022, 14, 4.

(75) Nassau, K., Conserving light sensitive minerals and gems. In: The Care and Conservation of Geological Ma-terials: Minerals, Rocks, Meteorites and Lunar Finds; Howie, F. M. (Ed.), Butterworth-Heinemann, Oxford, 1992, pp. 11–24.

(76) Currier, R. H., Natural fading of аmethyst. Gems Gemol. 1985, 21, 115.

(77) Kane, R. E., Amethyst, heat treated. Gems Gemol. 1985, 21, 43.

(78) Rossman, G. R., Colored varieties of the silica minerals. In: Silica: Physical Behavior, Geochemistry, and Materi-als Applications; Heaney, P.J.; Prewitt, C.T.; Gibbs, G.V. (Eds.), Mineralogical Society of America, 1994, pp. 433–468.

(79) King, R. J., The care of minerals, Section 3A: The cura-tion of minerals. J. Russel Soc. 1985, 1, 94–114.

(80) King, R. J., The care of minerals, Section 2: The devel-opment of minerals. J. Russel Soc. 1983, 1, 54–77.

(81) Howie, F. M., Sulphides and allied minerals in collec-tions. In: Howie, F. M. (Ed.). The Care and Conservation of Geological Materials: Minerals, Rocks, Meteorites and Lunar Finds. Butterworth-Heinemann, Oxford, 1992, pp. 56–69.

(82) Douglass, D. L.; Chichang Shing, C.; Wang, G., The light-induced alteration of realgar to pararealgar. Am. Min-eral. 1992, 77, 1266–1274.

(83) Muniz-Miranda, M.; Sbrana, G.; Bonazzi P.; Menchetti, S.; Pratesi, G., Spectroscopic investigation and normal mode analysis of As4S4 polymorphs. Spectrochim. Acta Part A, 1996, 52, 1391–1401.

(84) Naumov, P.; Makreski, P.; Jovanovski, G., Direct atomic scale observation of linkage isomerization of As4S4 clus-ters during the photoinduced transition of realgar to pararealgar. Inorg. Chem. 2007, 46, 10624–10631.

(85) Naumov, P.; Makreski, P.; Petruševski, G.; Runčevski, T.; Jovanovski, G., Visualization of a discrete solid-state pro-cess with steady-state X-ray diffraction: observation of hopping of sulfur atoms in single crystals of realgar. J. Am. Chem.Soc. 2010, 132, 11398–11401.

(86) Macchia, A.; Nunziante Cesaro, S.; Campanella, L.; Ma-ras, A.; Rocchia, M.; Roscioli, G., Which light for cultural heritage: Comparison of light sources with respect to re-algar photodegradation. J. Appl. Spectrosc. 2013, 80, 637–643.

(87) Pratesi, G.; Zoppi, M., An insight into the inverse trans-formation of realgar altered by light. Am. Mineral. 2015, 100, 1222–1229.

(88) Wu, F.; Zhang, Y.; Li, Y.; Wang, Y.; Ma, J.; Wang, F., Photoinduced effects of monochromatic visible light with different wavelengths on realgar, J. Raman Spectrosc. 2022, 53, 1533–1539.

(89) Whitworth, A. J.; Brand, H. E. A.; Wilson, S.; Grey, I. E.; Stephen, N. R.; Gozukara, Y.; Frierdich, A. J., The occur-rence of monoclinic jarosite in natural environments, Am. Mineral. 2023, 108, 584–594.

(90) Arregui, V.; Gordon, A.; Steintveit, G., The jarosite pro-cess-past, present and future. In: Lead-Zinc-Tin'80, Cigan, J. M.; Mackey, T. S.; O'Keefe, T. J. (Eds), Metal-lurgical Society of AIME, Warrendale, 1980, 97–123.

(91) Sandström, Å.; Shchukarev, A.; Paul, J., XPS characteri-sation of chalcopyrite chemically and bio-leached at high and low redox potential, Miner. Eng. 2005, 18, 505–515.

(92) Stott, M. B.; Watling, H. R.; Franzmann, P. D.; Sutton, D., The role of iron-hydroxy precipitates in the pas-sivation of chalcopyrite during bioleaching, Miner. Eng. 2000, 13, 1117–1127.

(93) Spasovski, O.; Mirčovski, V., New data on the hydro-thermal alterations in the Plavica deposit (eastern Mace-donia), Geologica Macedonica 2008, 22, 9–16.

(94) Kerolli-Mustafa, M.; Bačić, I.; Ćurković, L., Investigation of jarosite process tailing waste by means of Raman and infrared spectroscopy, Mat.-wiss. u. Werkstofftech 2013, 44, 768–773.

(95) Powers, D. A.; Rossman, G. R.; Schugar, H. J.; Gray, H. B., Magnetic behavior and infrared spectra of jarosite, basic iron sulfate, and their chromate analogs, J. Solid State Chem. 1975, 13, 1–13.

(96) Serna, C. J.; Cortina, C. P.; Ramos, J. V. G., Infrared and Raman study of alunite-jarosite compounds, Spectrochim. Acta Part A, 1986, 42, 729–734.

(97) Sasaki, K.; Tanaike, O.; Konno, H., Distinction of jaro-site-group compounds by Raman spectroscopy, Can. Mineral. 1998, 36, 1225–1235.

(98) Makreski, P.; Jovanovski, G.; Dimitrovska, S., Minerals from Macedonia. XIV. Identification of some sulfate min-erals by vibrational (infrared and Raman) spectroscopy, Vib. Spectrosc. 2005, 39, 229–239.

(99) Bishop, J. L.; Murad, E., The visible and infrared spectral properties of jarosite and alunite, Am. Mineral. 2005, 90, 1100–1107.

(100) Frost, R. L.; Wills, R.; Weier, M. L.; Martens, W. Com-parison of the Raman spectra of natural and synthetic K- and Na-jarosites at 298 and 77 K, J. Raman Spectrosc. 2005, 36, 435–444.

(101) Frost, R. L.; Wills, R.; Weier, M. L.; Martens, W.; Mills, S., A Raman spectroscopic study of selected natural jaro-sites, Spectrochim. Acta Part A, 2006, 63, 1–8.

(102) Lane, M. D., Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals, Am. Mineral. 2007, 92, 1–18.

(103) Murphy, P. J.; Smith, A. M. L.; Hudson-Edwards, K. A.; Dubbin, W. E.; Wright, K., Raman and IR spectroscopic studies of alunite-supergroup compounds containing Al, Cr3+, Fe3+ and V3+ at the B site, Can. Mineral. 2009, 47, 663–681.

(104) Spratt, H. J.; Rintoul, L.; Avdeev, M.; Martens, W. N., The crystal structure and vibrational spectroscopy of jaro-site and alunite minerals, Am. Mineral. 2013, 98, 1633–1643.

(105) Lafuente, B.; Downs, R. T.; Yang, H.; Stone, N., The power of databases: the RRUFF project. In: Highlights in Mineralogical Crystallography, Armbruster, T.; Danisi, R.M. (Eds), De Gruyter, Berlin, 2015, 1–30.

(106) Dao, N. Q.; Daudon, M., Infrared and Raman Spectra of Calculi, Elsevier, Paris, 1997.

(107) Mazet, V.; Carteret, C.; Brie, D.; Idier, J.; Humbert, B., Background removal from spectra by designing and min-imising a non-quadratic cost function, Chemometr. Intell. Lab. Syst. 2005, 76, 121–133.

(108) Chen, T. C.; Shea, D. A.; Morris, M. D., Effect of hydro-gen peroxide bleaching on bone mineral/matrix ratio, Appl. Spectrosc. 2002, 56, 1035–1037.

(109) Golcuk, K.; Mandair, G. S.; Callender, A. F.; Sahar, N.; Kohn, D. H.; Morris, M. D., Is photobleaching necessary for Raman imaging of bone tissue using a green laser? Biochim. Biophys. Acta 2006, 1758, 868–873.

(110) Shea, D. A.; Morris, M. D., Bone tissue fluorescence reduction for visible laser Raman spectroscopy, Appl. Spectrosc. 2002, 56, 182–186.

(111) Penel, G.; Leroy, G.; Bres, E., New preparation method of bone samples for Raman microspectrometry, Appl. Spectrosc. 1998, 52, 312–313.

(112) Kocademir, M.; Kumru, M.; Gölcük, K.; Suarez-Ibarrola, R.; Miernik, A., Fluorescence reduction in Raman spec-troscopy by chemical bleaching on renal stones. J. Appl. Spectrosc. 2020, 87, 282–288.

(113) Wang, C.-C.; Hao, X.-D.; Guoa, G.-S.; van Loosdrechtc, M. C. M., Formation of pure struvite at neutral pH by electrochemical deposition, Chem. Eng. J. 2010, 159, 280–283.

(114) Leela, S.; Ranishree, J. K.; Perumal, R. K.; Ramasamy, R., Characterization of struvite produced by an algal asso-ciated agarolytic bacterium Exiguobacterium aestuarii St. SR 101, J. Pure Appl. Microbiol. 2019, 13, 1227–1234.

(115) Johnson, E; Manjula, K., In vitro study of inhibitory effect of ficus benghalensis fruits extract on struvite crys-tals, Int. J. Recent Sci. Res. 2019, 10, 34932–34936.

(116) Heyns, A. M.; Venter, M. W.; Range, K.-J., The vibra-tional spectra of NH4VO3 at elevated temperatures and pressures, Z. Naturforsch. B 1987, 42, 843–852.

(117) Daudon, M.; Protat, M. F.; Reveillaud, R. J.; Jaeschke-Boyer, H., Infrared spectrometry and Raman microprobe in the analysis of urinary calculi, Kindey Int. 1983, 23, 842–850.

(118) Stefov, V.; Šoptrajanov, B.; Spirovski F.; Kuzmanovski, I.; Lutz, H. D.; Engelen, B., Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (stru-vite) and its isomorphous analogues. I. Spectra of protiat-ed and partially deuterated magnesium potassium phos-phate hexahydrate, J. Mol. Struct. 2004, 689, 1-10.

(119) Stefov, V.; Šoptrajanov, B.; Kuzmanovski, I.; Lutz, H. D.; Engelen, B., Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its iso-morphous analogues. III. Spectra of protiated and partial-ly deuterated magnesium ammonium phosphate hexahy-drate, J. Mol. Struct. 2005, 752, 60-67.

(120) Frost, R. L.; Weier, M. L.; Martens, W. N.; Henry, D. A.; Mills, S. J., Raman spectroscopy of newberyite, han-nayite and struvite, Spectrochim. Acta Part A 2005, 62, 181–188.

(121) Prywer, J.; Kasprowicz, D.; Runka, T., Temperature-dependent μ-Raman investigation of struvite crystals, Spectrochim. Acta Part A 2016, 158, 18–23.

(122) Makreski, P.; Todorov, J.; Makrievski, V.; Pejov, L.; Jo-vanovski, G., Vibational spectra of the rare-occurring complex hydrogen arsenate minerals pharmacolite, picro-pharmacolite and vladimirite. Dominance of Raman over IR spectroscopy to discriminate arsenate and hydrogen arsenate units, J. Raman Spectrosc. 2018, 49, 747–763.

(123) Frost, R. L.; Bahfenne, S.; Čejka, J.; Sejkora, J.; Plášil, J.; Palmer, S. J.; Keeffe, E. C.; Měmec, I., Dussertite BaFe3+3(AsO4)2(OH)5—a Raman spectroscopic study of a hydroxy-arsenate mineral, J. Raman Spectrosc. 2011; 42, 56–61.

(124) Mihajlović, T.; Libowitzky, E.; Effenberger, H., Synthe-sis, crystal structure, infrared and Raman spectra of Sr5(As2O7)2(AsO3OH), J. Solid State Chem. 2004, 177, 3963–3970.

(125) Drozd, M.; Baran, J.; Pietraszko, A., Diguanidinium hy-drogenarsenate monohydrate and its deuterated analogue: Vibrational, DSC and X-ray investigations, Spectrochim. Acta Part A, 2005, 61, 2809–2821.

(126) Berrocal, T.; Mesa, J. L.; Pizarro, J. L.; Bazan, B.; Iglesi-as, M.; Vilas, J. L.; Rojo, T.; Arriortua, M. I., Catalytic performance of the high and low temperature polymorphs of (C6N2H16)0.5[(VO)(HAsO4)F]: structural, thermal, spectroscopic and magnetic studies, Dalton Transact. 2010, 39, 834–846.

(127) Bazan, B.; Mesa, J. L.; Pizarro, J. L.; Lezama, L. Gari-taonandia, J. S.; Arriortua, M. I.; Rojo, T., Hydrothermal synthesis, crystal structure, and spectroscopic and mag-netic properties of a new organically templated mixed-anion fluoro-arsenate–phosphate iron(III) compound, (C6H14N2)[Fe3(HAsO4)1.33(HPO4)0.67(AsO4)0.84(PO4)0.16F4]·0.5(H2O), Solid State Sci. 2003, 5, 1291–1301.

(128) Frost, R. L.; Bahfenne, S.; Cejka, J.; Sejkora, J.; Plasil, J.; Palmera, S. J., Raman spectroscopic study of the hydro-gen-arsenate mineral pharmacolite Ca(AsO3OH)·2H2O—implications for aquifer and sediment remediation, J. Ra-man Spectrosc. 2010, 41, 1348–1352.

(129) Đorđević, T.; Karanović, L., Synthesis, crystal structure, in-frared and Raman spectra of Sr4Cu3(AsO4)2 (AsO3OH)4·3H2O and Ba2Cu4(AsO4)2(AsO3OH)3, J. Solid State Chem. 2008, 181, 2889–2898.

(130) Đorđević, T.; Karanović, L., A new polymorph of Ba(AsO3OH): Synthesis, crystal structure and vibrational spectra, J. Solid State Chem. 2010, 183, 2835–2844.

(131) Sejkora, J.; Čejka, J.; Frost, R. L.; Bahfenne, S.; Plášil, J.; Keeffe, E. C., Raman spectroscopy of hydrogen-arsenate group (AsO3OH) in solid-state compounds: copper min-eral phase geminite Cu(AsO3OH)·H2O from different geological environments, J. Raman Spectrosc. 2010, 41, 1038–1043.

(132) Frost, R. L.; Čejka, J.; Sejkora, J.; Plášil, J.; Bahfenne, S.; Keeffe, E. C., Raman spectroscopy of hydrogen-arsenate group (AsO3OH)2‒ in solid-state compounds: Cobalt con-taining zinc–arsenate mineral, koritnigite (Zn,Co)(AsO3OH)·H2O, J. Raman Spectrosc. 2011, 42, 534–539.

(133) Čejka, J.; Sejkora, J.; Bahfenne, S.; Palmer, S. J.; Plášil, J.; Frost, R. L., Raman spectroscopy of hydrogene-arsenate group (AsO3OH) in solid-state compounds: co-balt mineral phase burgessite Co2(H2O)4[AsO3OH]2·H2O, J. Raman Spectrosc. 2011, 42, 214–218.

(134) Ferraris, G., The crystal structure of pharmacolite, CaH(AsO4)·2H2O, Acta Cryst. B, 1969, 25, 1544–1550.

(135) Yang, H.; Evans, S. H.; Downs, R. T.; Jenkins, R. A., The crystal structure of vladimirite, with a revised chemi-cal formula, Ca4(AsO4)2(AsO3OH)·4H2O, Can. Mineral. 2011, 49, 1055–1064.

(136) Frost, R. L.; Kloprogge, J. T., Raman spectroscopy of some complex arsenate minerals - implications for soil remediation, Spectrochim. Acta Part A, 2003, 59, 2797–2804.

(137) Krenner, J. S., Symplesit felsőbányáról, Természetrajzi Füzetek, 1886, 10, 83–108.

(138) Wolfe, C. W., Classification of minerals of the type A3(XO4)2·nH2O (concluded), Am. Mineral. 1940, 25, 787–809.

(139) Ito, T., Structure of vivianite and symplesite, Nature 1949, 164, 449–450.

(140) Mori, H.; Ito, T., The structure of vivianite and symple-site, Acta Cryst. 1950, 3, 1–6.

(141) Ito, T., The symplesite problem, Acta Cryst. 1954, 7, 630.

(142) Schmetzer, K.; Tremmel, G.; Bartelke, W., Paragenese seltener minerale aus Bou-Azzer, Marokko; parasymplesit, symplesit, schneiderhöhnit, karibibit., N. Jb. Mineral. Abh. 1980, 138, 94–108.



2024-05-13 — Updated on 2024-05-20


How to Cite

Makreski, P., Pejov, L., & Jovanovski, G. (2024). Crossroads of vibrational (infrared and Raman) spectroscopy and X-ray powder diffraction in identification and characterization of some minerals – advantages and limitations. A review. Macedonian Journal of Chemistry and Chemical Engineering, 43(1), 1–28. (Original work published May 13, 2024)



Structural Chemistry

Most read articles by the same author(s)