Minerals from Macedonia. XXX. Complementary use of vibrational spectroscopy and X-ray powder diffraction for spectra-structural study of some cyclo-, phyllo- and tectosilicate minerals. A review


  • Gligor Jovanovski Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Skopje Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje
  • Petre Makreski Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje




vibrational spectroscopy, infrared, Raman, powder X-ray powder diffraction, identification, cyclosilicate, phyllosilicate, tectosilicate, minerals


A review of the results of the complementary use of vibrational spectroscopy (infrared and Raman) and X-ray powder diffraction in the process of identification and spectra–structure correlation of some cyclo-, phyllo- and tectosilicate minerals originating from the Republic of Macedonia             is presented. The following minerals are studied: schorl, Na(Fe2+,Mg)3Al6(BO3)3Si6O18(OH)4;               beryl, (Be,Mg)3Al2Si6O18; chrysotile, Mg3Si2O5(OH)4; antigorite, (Mg,Fe2+)3Si2O5(OH)4; talc, (Mg,Fe2+)3Si4O10(OH)2; clinochlore, (Mg,Fe2+)5Si3(Al,Cr)2O10(OH)8; cymrite, BaAl2Si2O8×H2O; mont­morillonite, (K,Ca)0.3(Al,Mg)2Si4O10(OH)2×nH2O; muscovite, KAl2(Si3Al)O10(OH,F)2; phlogopite, KMg3(Si3Al)O10(OH,F)2; biotite, K(Mg,Fe2+)3AlSi3O10(OH,F)2; sheridanite, (Mg,Al)6(Si,Al)4O10(OH)8; albite, NaAlSi3O8; microcline, KAlSi3O8; sanidine, (K,Na)(Si,Al)4O8 and stilbite, Na3Ca3Al8Si28O72×30H2O.


D. Bish, J. Post, Quantitative mineralogical analysis using the Rietveld full-pattern fitting method, Am. Mineral. 78, 932–940 (1993).

D. Yu. Pushcharovsky, Recent Contributions and modem perspectives in XRD studies of minerals, Croat. Chem. Acta 73, 869–886 (2000).

V. C. Farmer (Ed.), The Infrared Spectra of Minerals, Mineralogical Society, London, 1974.

P. F. McMillan, A. M. Hofmeister, Infrared and Raman Spectroscopy, in: F. C. Hawthorne, ed., Spectroscopic Methods in Mineralogy and Geology, Rev. Mineral., Mineral. Soc. Am., Blacksburg, VA, 18, 99–157 (1988).

W. P. Griffith, Raman Spectroscopy of Minerals, in: V. C. Farmer (Ed.), The Infrared Spectra of Minerals, Min-eralogical Society, London, 1974, pp. 119–135.

I. Burgio, R. J. H. Clark, Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pig-ments with visible excitation, Spectrochim. Acta, Part A 57, 1491–1521 (2001).

S. J. Gaffey, Spectral reflectance of carbonate minerals in the visible and near infrared (0.35-2.55 microns): calcite, aragonite, and dolomite, Am. Mineral. 71, 151–162 (1986).

A. E. Milodowski, D. J. Morgan, Identification and estimation of carbonate minerals at low levels by evolved CO2 analysis, Nature 286, 248–249 (1980).

S. Yariv, Thermal analysis of minerals, Themochim. Acta 148, 421–430 (1989).

Z. W. Zhang, F. X. Gan, Analysis of the chromite inclu-sions found in nephrite minerals obtained from different deposits using SEM-EDS and LRS, J. Raman Spectrosc. 42, 1808–1811 (2011).

E. Akkas, L. Akin, H. E. Cubukcu, H. Artuner, Applica-tion of decision tree algorithm for classification and identification of natural minerals using SEM-EDS, Comput. Geosci. 80, 38–48 (2015).

M. R. Lee, D. J. Brown, C. L. Smith, M. E. Hodson, M. Mackenzie, R. Hellmann, Characterization of mineral surfaces using FIB and TEM: A case study of naturally weathered alkali feldspars, Am. Mineral. 92, 1383–1394 (2007).

T. J. Headley, R. C. Ewing, R. F. Haaker, Amorphous structure of metamict minerals observed by TEM, Nature 293, 449–450 (1981).

L. Ottolini, F. Camara, S. Bigi, An investigation of matrix effects in the analysis of fluorine in humite-group minerals by EMPA, SIMS, and SREF, Am. Min-eral. 85, 89–102 (2000).

F. C. Hawthorne, M. Cooper, P. Bottazzi, L. Ottolini, T. C. Ercit, E. S. Grew, Microanalysis of minerals for boron by SREF, SIMS AND EMPA - A comparative-study, Can. Mineral. 33, 389–397 (1995).

G. Jovanovski, B. Boev, P. Makreski, M. Najdoski, G. Mladenovski, Minerals from Macedonia. XI. Silicate va-rieties and their localities – Identification by FT IR spec-troscopy, Bull. Chem. Technol. Maced. 22, 111–141 (2003).

G. Jovanovski, P. Makreski, B. Šoptrajanov, B. Kaitner, B. Boev, Minerals from Macedonia. Comple¬mentary use of vibrational spectroscopy and X-ray powder diffraction for identification and detection purposes, Contributions, Sec. Math. Tech. Sci., MASA 26, 7–84 (2005).

G. Jovanovski, P. Makreski, B. Kaitner, B. Šoptrajanov, Minerals from Macedonia. X-ray powder diffraction vs. vibrational spectroscopy in mineral identification, Con-tributions, Sec. Math. Tech. Sci., MASA 30, 7–34 (2009).

G. Jovanovski, P. Makreski, B. Kaitner, B. Boev, Silicate minerals from Macedonia. Complementary use of vibrational spectroscopy and X-ray powder diffraction for identification and detection purposes, Croat. Chem. Acta 82, 363–386 (2009); Erratum: Croat. Chem. Acta 85, CCXI–CCXIII (2012).

G. Jovanovski, B. Boev. P. Makreski, Minerals from the Republic of Macedonia with an Introduction to Mineral-ogy, Macedonian Academy of Sciences and Arts, Skopje, 2012.

P. Makreski, G. Jovanovski, B. Kaitner, T. Stafilov, B. Boev, Minerals from Macedonia. X. Sepa¬ration and identification of some oxide minerals by FT IR spectros-copy, AAS, AES-ICP and powder XRD, N. Jb. Miner. Abh. 180, 215–243 (2004).

P. Makreski, G. Jovanovski, S. Stojančevska, Minerlas from Macedonia. XIII. Vibrational spectra of some commonly appearing nesosilicate minerals, J. Mol. Struct. 744–747, 79–92 (2005).

P. Makreski, G. Jovanovski, A. Gajović, Minerals from Macedonia. XVII. Vibrational spectra of some common appearing amphiboles, Vib. Spectrosc. 40, 98–109 (2006).

P. Makreski, G. Jovanovski, Minerals from Macedonia. XXII. Laser-induced fluorescence bands in the FT-Raman spectrum of almandine mineral, J. Raman Spectrosc. 39, 1210–1213 (2008).

GRAMS32 for Microsoft Windows, Vers. 4.10, Galactic Industries Corporation, 1991–1996.

R. Shirley, The CRYSFIRE System for Automatic Powder Indexing. (http://www.ccp14.ac.uk/tutorial/crys/).

J. Laugier and B. Bochu, LMGP-Suite Suite of programs for the interpretation of X-ray experiments, ENSP/Laboratorie des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d′Hères, France. (http://www.inpg.fr/LMGP and



T. Ito, R. Sadanaga, A Fourier analysis of the structure of tourmaline, Acta Crystallogr. 4, 385–390 (1951).

F. C. Hawthorne, D. J. MacDonald, P. C. Burns, Reas-signment of cation site occupancies in tourmaline: Al-Mg disorder in the crystal structure of dravite, Am. Mineral. 78, 265–270 (1993).

C. Castaneda, E. F. Oliveira, N. Gomes, A. C. P. Soares, Infrared study of OH sites in tourmaline from the elbaite-schorl series, Am. Mineral. 85, 1503–1507 (2000).

P. Keller, E. R. Robles, A. P. Perez, F. Fontan, Chemis-try, paragenesis and significance of tourmaline in pegmatites of the Southern Tin Belt, central Namibia, Chem. Geol. 158, 203–225 (1999).

B. Gasharova, B. Mihailova, L. Konstantinov, Raman spectra of various types of tourmaline, Eur. J. Mineral. 9, 935–940 (1997).

A.Pieczka, Modelling of some structural parameters of tourmalines on the basis of their chemical composition. I. Ordered structure model, Eur. J. Mineral. 12, 589–596 (2000).

K. A. Hughes, J. M. Hughes, M. D. Dyar, Chemical and structural evidence for [4]B ↔ [4]Si substitution in natural tourmalines, Eur. J. Mineral. 13, 743–747 (2001).

F. C. Hawthorne, D. J. Hendry, Classification of the minerals of the tourmaline group, Eur. J. Mineral. 11, 201–215 (1999).

M. J. Buerger, C. W. Burnham, D. R. Peacor, Assess-ment of the several structures proposed for tourmaline, Acta Crystallogr. 15, 583–590 (1962).

C. T. Gonzales-Carreno, M. Fernandez, J. Sanz, Infrared and electron microprobe analysis of tourmalines, Phys. Chem. Miner. 15, 452–460 (1988).

F. F. Foit Jr., P. E. Rosenberg, Coupled substitutions in the tourmaline group, Contrib. Mineral. Petrol. 62, 109–127 (1977).

F. F. Foit, Jr., Crystal chemistry of alkali-deficient schorl and tourmaline structural relationships, Am. Mineral. 74, 422–431 (1989).

A. Ertl, J. M. Hughes, S. Prowatke, G. R. Rossman, D. London, E. A. Fritz, Mn-rich tourmaline from Austria: structure, chemistry, optical spectra, and relations to synthetic solid solutions. Am. Mineral. 88, 1369–1376 (2003).

A. Ertl, J. M. Hughes, S. Prowatke, T. Ludwig, P. S. R. Prasad, F. Brandstätter, W. Körner, R. Schuster, F. Pertlik, H. Marschall, Tetrahedrally-coordinated boron in tourmalines from the liddicoatite-elbaite series from Madagascar: Structure, chemistry, and infrared spectro-scopic studies. Am. Mineral. 91, 1847–1856 (2006).

A. Ertl, U. Kolitsch, S. Prowatke, M. D. Dyar, D. J. Henry, The F-analogue of schorl from Grasstein, Trentino – South Tyrol, Italy: crystal structure and chemistry. Eur. J. Mineral. 18, 583–588 (2006).

A. Ertl, G. R. Rossman, J. M. Hughes, D. London, Y. Wang, J. A. O’Leary, M. D. Dyar, S. Prowatke, T. Lud-wig, E. Tillmanns, Tourmaline of the elbaite-schorl series from the Himalaya Mine, Mesa Grande, California, U.S.A.: A detailed investigation. Am. Mineral. 95, 24–40 (2010).

A. Ertl, E. Tillmanns, The [9]-coordinated X site in the crystal structure of tourmaline-group minerals. Z. Kristallogr. 227, 456–459 (2012).

A. Ertl, U. Kolitsch, M. D. Dyar, J. M. Hughes, G. R. Rossman, A. Pieczka, D. J. Henry, F. Pezzotta, S. Prowatke, C. L. Lengauer, W. Körner, F. Brandstätter, C. A. Francis, M. Prem, E. Tillmanns, Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: evidence from Fe2+- and Mn2+-rich tourmaline, Am. Mineral. 97, 1402–1416 (2012).

A. Ertl, G. Giester, U. Schüssler, H. Brätz, M. Okrusch, E. Tillmanns, H. Bank, Cu- and Mn-bearing tourmalines from Brazil and Mozambique: Crystal structures, chem-istry and correlations. Mineral. Petrol. 107, 265–279 (2013).

W. P. Griffith, Raman studies on rock-forming minerals. Part I. Orthosilicates and cyclosilicates, J. Chem. Soc. A, 1372–1377 (1969).

M. A. Alvarez, R. Coy-Yll, Raman spectra of tourmaline, Spectrochim. Acta, Part A 34, 899–908 (1978).

M. Peng, H.-K. Mao, L. G. Chen, E. E. T. Chan, Ann. Rep. of the Director of the Geophysical Laboratory, Carnegie Inst. Washington, Geophysical Laboratory, Washington, DC, 1988–1989, pp. 99–105.

A. Ertl, U. Kolitsch, M. D. Dyar. H.-P. Meyer, G. R. Rossman, D. J. Henry, M. Prem, T. Ludwig, L. Nasdala, C. L. Lengauer, E. Tillmanns, G. Niedermayer, Fluor-schorl, a new member of the tourmaline supergroup, and new data on schorl from the cotype localities, Eur. J. Mineral. 28, 163–177 (2016).

A. Aurisicchio, O. Grubessi, P. Zecchini, Infrared spec-troscopy and crystal chemistry of the beryl group, Can. Mineral. 32, 55–68 (1994).

R. D. Aines, G. R. Rossman, The high temperature behavior of water and carbon dioxide in cordierite and beryl, Am. Mineral. 69, 319–327 (1984).

D. L. Wood, K. Nassau, The characterization of beryl and emerald by visible and infrared absorption spectroscopy, Am. Mineral. 53, 777–800 (1968).

D. L. Wood, K. Nassau, Infrared spectra of foreign mole-cules in beryl, J. Chem. Phys. 47, 2220–2228 (1967).

R. I. Mashkovtsev, A. S. Lebedev, Infrared spectroscopy of water in beryl, Zh. Strukt. Khim. 33, 930–933 (1992).

D. M. Adams, I. R. Gardner, Single-crystal vibrational spectra of apatite, vanadinite, and mimetite, J. Chem. Soc., Dalton Trans. 74, 1502–1505 (1974).

A. M. Hofmeister, T. C. Hoering, D. Virgo, Vibrational spectroscopy of beryllium aluminosilicates: Heat capacity calculations from band assignments, Phys. Chem. Miner. 14, 205–224 (1987).

B. Charoy, P. De Donato, O. Barres, C. Pinto-Coelho, Channel occupancy in an alkali-poor beryl from Serra Branca (Goias, Brazil): Spectroscopic characterization, Am. Mineral. 81, 395–403 (1996)

M. Lodzinski, M. Sitarz, K. Stec, M. Kozanecki, Z. Fojud, S. Jurga, ICP, IR, Raman, NMR investigations of beryls from pegmatites of the Sudety Mts, J. Mol. Struct. 744–747, 1005–1015 (2005).

J. T. Kloprogge, R. L. Frost, Raman microscopic study at 300 and 77 K of some pegmatite minerals from the Iveland–Evje area, Aust-Agder, Southern Norway, Spectrochim. Acta, Part A, 56, 501–513 (2000).

H. Hagemann, A. Lucken, H. Bill, J. Gysler-Sanz, H. A. Stadler, Polarized Raman spectra of beryl and bazzite, Phys. Chem. Miner. 17, 395–401 (1990).

B. A. Kolesov, C. A. Geiger, The orientation and vibra-tional states of H2O in synthetic alkali-free beryl, Phys. Chem. Miner. 27, 557–564 (2000).

B. A. Kolesov, Raman spectra of single H2O molecules isolated in cavities of crystals, J. Struct. Chem. 47, 21–34 (2006).

P. Makreski, G. Jovanovski, Minerals from Macedonia. XXIII. Spectroscopic and structural characterization of schorl and beryl cyclosilicates, Spectrochim. Acta, Part A, 73, 460–467 (2009).

V. Šontevska, G. Jovanovski, P. Makreski, Minerals from Macedonia. XIX. Vibrational spectroscopy as identificational tool for some sheet silicate minerals, J. Mol. Struct. 834–836, 318–327 (2007).

M. J. Harris, E. K. H. Salje, B. K. Guttler, M. A. Car-penter, Structural states of natural potassium feldspar: An infrared spectroscopic study, Phys. Chem. Miner. 16, 649–658 (1989).

T. P. Mernagh, Use of the laser Raman microprobe for discrimination amongst feldspar minerals, J. Raman Spectrosc. 22, 453–457 (1991).

F. F. Foit Jr., X-ray and Optical Data for a Vanadium-rich Dravite from Silver Knob, Mariposa County, Cali-fornia, U.S.A., Powder Diffr. 7, 236–238 (1992).

E. S. Bloodaxe, J. M. Hughes, M. D. Dyar, E. S Grew, C. V. Guidotti, Linking structure and chemistry in the schorl-dravite series, Am. Mineral. 84, 922–928 (1999).

C. Aurisicchio, G. Fioravanti, O. Grubessi, P. F. Zanazzi, Reappraisal of the crystal chemistry of beryl, Am. Mineral. 73, 826–837 (1988).

W. D. Nesse, Introduction to Mineralogy, Oxford Uni-versity Press, New York, 2000.

A. Wang, J. Han, L. Guo, J. Yu, P. Zeng, Database of standard Raman spectra of minerals and related inorganic crystals, Appl. Spectrosc. 48, 959–968 (1994).

G. R. Hunt, J. W. Salisbury, C. J. Lenhoff, Visible and near infrared spectra of minerals and rocks. VI. Addi-tional silicates, Mod. Geol. 4, 85–106 (1973).

E. Huang, C. H. Chen, T. Huang, E. H. Lin, J.-A. Xu, Raman spectroscopic characteristics of Mg-Fe-Ca py-roxenes, Am. Mineral. 85, 473–479 (2000).

P. Makreski, G. Jovanovski, A. Gajović, T. Biljan, D. Angelovski, R. Jaćimović, Minerals from Macedonia. XVI. Vibrational spectra of some common appearing pyroxenes and pyroxenoids, J. Mol. Struct. 788, 102–114 (2006).

C. Viti, M. Mellini, Contrasting chemical compositions in associated lizardite and chrysotile in veins from Elba, It-aly, Eur. J. Mineral. 9, 585–596 (1997).

D. G. Taylor, C. M. Nenadić, J. V. Crable, Infrared spectra for mineral identification, Amer. Ind. Hyg. Ass. J., 31, 100–108 (1970).

V. C. Farmer (Ed.), The Infrared Spectra of Minerals, Mineralogical Society, London, 1974, pp. 331–358.

E. Foresti, M. Gazzano, A. F. Gualteiri, I. G. Lesci, B. Lunelli, G. Pecchini, E. Renna, N. Roveri, Determination of low levels of free fibres of chrysotile in contaminated soils by X-ray diffraction and FTIR spectroscopy, Anal. Bioanal. Chem. 376, 653–658 (2003).

V. Stubičan, R. Roy, Isomorphous substitution and infra-red spectra of the layer lattice silicates, Am. Mineral. 46, 32–51 (1961).

M. Mellini, Y. Fuchs, C. Viti, C. Lemaire, J. Linares, Insights into the antigorite structure from Mössbauer and FTIR spectroscopies, Eur. J. Mineral. 14, 97–104 (2002).

NICODOM, Inorganic Library of FTIR Spectra – Min-erals, 1998.

J. D. Russell, V. C. Farmer, B. Velde, Replacement of OH by OD in layer silicates, and identification of the vi-brations of these groups in infra-red spectra, Mineral. Mag. 37, 869–879 (1970).

K. Smolander, A. Saastamoinen, M. Ahlgren, Determi-nation of talc in geological samples by infrared spec-trometry, Anal. Chim. Acta 217, 353–358 (1989).

W. Vedder, Correlations between infrared spectrum and chemical composition of mica, Am. Mineral. 49, 736–768 (1964).

N. O. Gopal, K. V. Narasimhulu, J. L. Rao, Optical absorption, EPR, infrared and Raman spectral studies of clinochlore mineral, J. Phys. Chem. Solids, 65, 1887–1893 (2004).

A. C. Prieto, J. Dubessy, M. Cathelineau, Structure-Composition Relationships in Trioctahedral Chlorites: A Vibrational Spectroscopy Study, Clay Clay Miner. 39, 531–539 (1991).

C. M. Graham, J. A. K. Tareen, P. F. McMillan, B. M. Lowe, An experimental and thermodynamic study of cymrite and celsian stability in the system BaO-Al2O3-SiO2-H2O, Eur. J. Mineral. 4, 251–269 (1992).

V. C. Farmer, J. D. Russell, The infra-red spectra of layer silicates, Spectrochim. Acta, 20, 1149 (1964).

C. Rinaudo, D. Gastaldi, E. Belluso, Characterization of chrysotile, antigorite and lizardite by FT-Raman spec-troscopy, Can. Mineral. 41, 883–890 (2003).

J. T. Kloprogge, R. L. Frost, L. Rintoul, Single crystal Raman microscopic study of the asbestos mineral chryso-tile, Phys. Chem. Chem. Phys. 1, 2559–2564 (1999).

J. J. Blaha, G. J. Rosasco, Raman microprobe spectra of individual microcrystals and fibers of talc, tremolite, and related silicate minerals, Anal. Chem. 50, 892–896 (1978).

A. K. Kleppe, A. P. Jephcoat, M. D. Welch, The effect of pressure upon hydrogen bonding in chlorite: A Raman spectroscopic study of clinochlore to 26.5 GPa, Am. Mineral. 88, 567–573 (2003).

R. L. Frost, L. Rintoul, Lattice vibrations of montmorillonite: a FT Raman and X-ray diffraction study, Appl. Clay Sci. 11, 171–183 (1996).

W. Vedder, R. S. McDonald, Vibrations of OH ions in muscovite, J. Chem. Phys. 38, 1583–1590 (1963).

M. V. Zeller, M. P. Juszli: Infrarot-Vergleichsspektren von Mineralien. Angewandte Infrarotspektroskopie, Heft 16, Bodenseewerk Perkin-Elmer & Co GmbH, Überlingen, 1975.


N. Wada, W. A. Kamitakahara, Inelastic neutron- and Raman-scattering studies of muscovite and vermiculite layered silicates, Phys. Rev. Part B, 43, 2391–2397 (1991).

D. A. McKeown, M. I. Bell, E. S. Etz, Vibrational anal-ysis of the dioctahedral mica: 2M1 muscovite, Am. Min-eral. 84, 1041–1048 (1999)

B. Wopenka, R. Popelka, J. D. Pasteris, S. Rotroff, Understanding the Mineralogical Composition of Ancient Greek Pottery through Raman Microprobe Spectroscopy, Appl. Spectrosc. 56, 1320–1328 (2002).

K. Langer, N. D. Chatterjee, K. Abraham, Infrared stud-ies of some synthetic and natural 2m1 dioctahedral micas, N. Jb. Min. Abh. 142, 91–110 (1981).

A. Beran, Infrared spectroscopy of micas, Rev. Mineral. Geochem. 46, 351–369 (2002).

A. Papin, J. Sergent, J. L. Robert, Intersite OH-F distri-bution in an Al-rich synthetic phlogopite, Eur. J. Mineral. 9, 501–508 (1997).

D. A. McKeown, M. I. Bell, E. S. Etz, Raman spectra and vibrational analysis of the trioctahedral mica phlogopite, Am. Mineral. 84, 970–976 (1999).

D. M. Jenkins, Empirical study of the infrared lattice vibrations (1100–350 cm−1) of phlogopite, Phys. Chem. Miner. 16, 408–414 (1989).



V. Šontevska, G. Jovanovski, P. Makreski, A. Raš-kovska, B. Šoptrajanov, Minerals from Macedonia. XXI. Vibrational spectroscopy as identificational tool for some phyllosilicate minerals, Acta Chim. Slov. 55, 757–766 (2008).

D. Slovenec and V. Bermanec, Sistematska mineralogija – Mineralogija silikata, Denona d.o.o., Zagreb, 2003.

V. C. Farmer, in: V .C. Farmer (Ed.): The Infrared Spectra of Minerals, Mineralogical Society, London, 1974, pp. 331–358.

G. Jovanovski, V. Stefov, B. Šoptrajanov, B. Boev, Minerals from Macedonia. IV. Discrimination between some carbonate minerals by FTIR spectroscopy, N. Jb. Miner. Abh. 177, 241–253 (2002).

O. H. Erdmannsdöffer, Über Kossmatite, ein neues Gleid der Sprödglimmergruppe und seine Paragenese, Cbl. Miner. Geol. Paläont., Abt. A, 69–72 (1925).

Lj. Barić, Dolomitmarmor in der Umgebung der Stadt Prilep und die in ihm vorkommenden Minerale, Tschermaks Miner. Petrogr. Mitt. 13, 233–249 (1969).

H. Strunz, E. H. Nickel, Strunz Mineralogical Tables (Ninth Ed): Chemical Structural Mineral Classification System, Schweizerbart’sche Verlagsbuchhandlung, Germany, 2001.

E. J. W. Whittaker, The structure of chrysotile, II. Cli-nochrysotile, Acta Crystallogr. 9, 855–862 (1956).

G. Capitani, M. Mellini, The modulated crystal structure of antigorite, Am. Mineral. 89, 147–158 (2004).

J. W. Gruner, The crystal structures of talc and pyrophyllite, Z. Kristallogr. 88, 412–419 (1934)

R. C. McMurchy, The crystal structure of the chlorite minerals, Z. Kristallogr. 88, 420–432 (1934).

V. A. Drits, A. A. Kashaev, G. V. Sokolova, Crystal structure of cymrite, Sov. Phys. Crystallogr. 20, 280–286 (1975).

S. Guggenheim, Y. H. Chang, A. F. Koster van Groos, Muscovite dehydroxylation: High-temperature studies, Am. Mineral. 72, 537–550 (1987).

A. Laurora, M. F. Brigatti, A. Mottana, D. Malferrari, E. Caprilli, Crystal chemistry of trioctahedral micas in al-kaline and subalkaline volcanic rocks: A case study from Mt. Sassetto (Tolfa district, Latium, central Italy), Am. Mineral. 92, 468–480 (2007).

S. B. Hendricks, M. E. Jefferson, Polymorphism of the micas with optical measurements, Am. Mineral. 24, (1939) 729–771.

P. Makreski, G. Jovanovski, B. Kaitner, A. Gajović , T. Biljan, Minerals from Macedonia: XVIII. Vibrational spectra of some sorosilicates, Vib. Spectrosc. 44, 162–170 (2007).

P. Makreski, G. Jovanovski, Minerals from Macedonia. XXII. Laser-induced fluorescence bands in the FT-Raman spectrum of almandine mineral, J. Raman Spectrosc. 39, 1210–1213 (2008).

P. Makreski, T. Runčevski, G. Jovanovski, Minerals from Macedonia. XXVI. Characterization and spectra-structure correlations for grossular and uvarovite. Raman study supported by IR spectroscopy, J. Raman Spectrosc. 42, 72–77 (2011).

H. Moenke, Mineralspektren, I. Akademie-Verlag, Ber-lin, 1962.

H. Moenke, Mineralspektren, II. Akademie-Verlag, Berlin, 1966.

E. A. Johnson, G. R. Rossman, The concentration and speciation of hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy, Am. Mineral. 88, 901–911 (2003).

R. Couty, B. Velde, Pressure-induced band splitting in infrared spectra of sanidine and albite, Am. Mineral. 71, 99–104 (1986).

B. Wyncke, P. F. McMillan, W. L. Brown, R. E. Openshaw, F. Brehat, A room-temperature phase transi-tion in maximum microcline. Absorption in the far infra-red (10–200 cm−1) in the temperature range 110–300 K, Phys. Chem. Miner. 7, 31–34 (1981).

H. Behrens, G. Muller, An infrared spectroscopic study of hydrogen feldspar (HA1Si3O8) Mineral. Mag. 59, 15–24 (1995).

K. Harada, K. Tomita, A sodian stilbite from Onigajo, Mié Prefecture, Japan, with some experimental studies concerning the conversion of stilbite to wairakite at low water vapor pressures, Am. Mineral. 52, 1438–1450 (1967).

M. W. Kasture, S. P. Mirajkar, V. V. Joshi, A. L. Choudhari, V. P. Shiralkar, Thermal behaviour and ad-sorption properties of natural stilbite, J. Incl. Phen. Mol. Recogn. Chem. 29, 1–13 (1997).

P. S. R. Prasad, K. S. Prasad, S. R. Murthy, Dehydration of natural stilbite: An in situ FTIR study, Am. Mineral. 90, 1636–1640 (2005).

M. Lodzinski, R. Wrzalik, M. Sitarz, Micro-Raman spectroscopy studies of some accessory minerals from pegmatites of the Sowie Mts and Strzegom-Sobótka massif, Lower Silesia, Poland, J. Mol. Struct. 744–747, 1017–1026 (2005).

W. Mozgawa, The relation between structure and vibra-tional spectra of natural zeolites, J. Mol. Struct. 596, 129–137 (2001).

J. E. Dickinson Jr., C. M. Scarfe, Raman spectroscopic study of glasses on the join diopside-albite, Geochim. Cosmochim. Acta 54, 1037–1043 (1990).

P. F. McMillan, S. Jakobsson, J. R. Holloway, L.A. Silver, A note on the Raman spectra of water-bearing albite glasses, Geochim. Cosmochim. Acta 47, 1937–1943 (1983).

R. Gout, E. H. Oelkers, J. Schott, A. Zwick, Propagating errors in decay equations: Examples from the Re-Os iso-topic system, Geochim. Cosmochim. Acta 61, 3013–3018 (1997).

P. Frogner, C. Broman, S. Lindblom, Weathering de-tected by Raman spectroscopy using Al-ordering in albite, Chem. Geol. 151, 161–168 (1998).

D. A. McKeown, Raman spectroscopy and vibrational analyses of albite: From 25 °C through the melting tem-perature, Am. Mineral. 90, 1506–1517 (2005).

D. W. Matson, S. K. Sharma, J. A. Philpotts, Raman spectra of some tectosilicates and of glasses along the orthoclase-anorthite and nepheline-anorthite joins, Am. Mineral. 71, 694–704 (1986).

S. E. J. Villar, H. G. M. Edwards, Near-infrared Raman spectra of terrestrial minerals: relevance for the remote analysis of Martian spectral signatures, Vib. Spectrosc. 39, 88–94 (2005).

B. Velde, Y. Syono, M. Kikuchi, H. Boyer, Raman microprobe study of synthetic diaplectic plagioclase feldspars, Phys. Chem. Miner. 16, 436–441 (1989).

B. Velde, H. Boyer, Raman microprobe spectra of natu-rally shocked microcline feldspars, J. Geophys. Res. 90, 3675–3682 (1985).

P. Makreski, G. Jovanovski, B. Kaitner, Minerals from Macedonia. XXIV. Spectra-structure characterization of tectosilicates, J. Mol. Struct. 924–926, 413–419 (2009).

E. K. H. Salje, B. Guttler, C. Ormerod, Determination of the degree of Al, Si order Qod in kinetically disordered albite using hard mode infrared spectroscopy, Phys. Chem. Miner. 16, 576–581 (1989).

M. Zhang, B. Wruck, A. Graeme-Barber, E. K. H. Salje, M. A. Carpenter, Phonon-spectroscopy on alkali-feldspars: Phase transitions and solid solutions, Am. Mineral. 81, 92–104 (1996).

M. Handke, W. Mozgawa, Vibrational spectroscopy of the amorphous silicates, Vib. Spectrosc. 5, 75–84 (1993).

K. Iiishi, T. Tomisaka, T. Kato, Y. Umegaki, Isomorphous substitution and infrared and far infrared spectra of the feldspar group, N. Jb. Miner. Abh. 115, 98–119 (1971).

M. O. Stengel, Normalschwingungen von Alkalifeldspäten, Z. Kristallogr. 146, 1–18 (1977).

M. Zhang, E. K. H. Salje, M. A. Carpenter, I. Parsons, H. Kroll, S. J. B. Reed, A. Graeme-Barber, Exsolution and Al-Si disorder in alkali feldspars: Their analysis by infrared spectroscopy, Am. Mineral. 82 (1997) 849–857.

G. Jovanovski, V. Stefov, B. Šoptrajanov, B. Boev, Minerals from Macedonia. IV. Discrimination between some carbonate minerals by FTIR spectroscopy, N. Jb. Miner. Abh. 177, 241–253 (2002).

S. K. Sharma, J. A. Philpotts, D. N. Matson, Ring distri-butions in alkali- and alkaline-earth aluminosilicate framework glasses – a Raman spectroscopic study, J. Non-Cryst. Solids 71, 403–410 (1985).

A. C. Lassaga, G. V. Gibbs, Quantum mechanical poten-tial surfaces and calculations on minerals and molecular clusters, Phys. Chem. Miner. 16, 29–41 (1988).

M. S. Joshi, V. V. Joshi, A. L. Choudhari, M. W. Kas-ture, Structural studies of natural heulandite using infrared spectroscopy, Mater. Chem. Phys. 48, 160–163 (1997).

R. T. Downs, R. M. Hazen, L. W. Finger, The high-pressure crystal chemistry of low albite and the origin of the pressure dependency of Al-Si ordering, Am. Mineral. 79, 1042–1052 (1994).

D. R. Allan, R. J. Angel, A high-pressure structural study of microcline (KAlSi3O8) to 7 GPa, Eur. J. Miner. 9, 263–275 (1997).

M. W. Phillips, P. H. Ribbe, The structures of monoclinic potassium-rich feldspars, Am. Mineral. 58, 263–270 (1973).

M. Slaughter, Crystal structure of stilbite, Am. Mineral. 55, 387–397 (1970).




How to Cite

Jovanovski, G., & Makreski, P. (2016). Minerals from Macedonia. XXX. Complementary use of vibrational spectroscopy and X-ray powder diffraction for spectra-structural study of some cyclo-, phyllo- and tectosilicate minerals. A review. Macedonian Journal of Chemistry and Chemical Engineering, 35(2), 125–155. https://doi.org/10.20450/mjcce.2016.1047




Most read articles by the same author(s)