Vibrational study and spectra-structure correlations in magnesium disaccharinate heptahydrate, Mg(sac)<sub>2</sub>⋅7H<sub>2</sub>O
DOI:
https://doi.org/10.20450/mjcce.2008.239Keywords:
magnesium disaccharinate heptahydrate, IR spectrum, Raman spectrum, spectra-structure correlationsAbstract
Infrared and Raman vibrational spectra of magnesium disaccharinate heptahydrate, Mg(sac)2⋅7H2O, in the 4000–380 cm–1 region (for infrared) and 4000–100 cm–1 region (for Raman) were studied. The assignment of the spectra was based on the experimental data for the previously studied metal saccharinates as well as the literature data for the ab initio calculations on the free deprotonated saccharinato species. Special attention was paid to the analysis of the H2O, CO and SO2 stretching modes. The spectral picture in the regions of the water, carbonyl and sulfonyl stretches is correlated with the number of the crystallographically determined non-equivalent H2O, CO and SO2 structural units. It was found that the presence of seven crystallographically different water molecules in the structure (fourteen different Ow⋅⋅⋅O and Ow⋅⋅⋅N distances) is not reflected in the appearance of the expected fourteen IR bands in the region of the OD stretching vibrations of the isotopically isolated HDO molecules. This must be due to the existence in the structure of several Ow⋅⋅⋅O or Ow⋅⋅⋅N hydrogen bonds with very similar strengths causing an overlap of the corresponding bands in the spectrum. Despite the presence of two carbonyl groups with practically identical C–O distances [124.2(3) and 124.0(3) pm], two clearly separated bands are registered in the carbonyl stretching region of the IR (1660 and 1627 cm–1) and Raman spectrum (1648 and 1620 cm–1). On the other hand, although two nonequivalent SO2 groups are present in the structure of Mg(sac)2⋅7H2O, only one pair of bands due to SO2 stretchings [νas(SO2 and νs(SO2) modes] is registered in the IR spectrum.
References
G. Jovanovski, Metal Saccharinates and Their Complexes with N-donor Ligands, Croat. Chem. Acta, 73, 843–868 (2000).
B. Kamenar, G. Jovanovski, Manganese(II) Saccharinate Hexahydrate, Mn(C7H4NO3S)2•6H2O, and Isomorphism with the Analogous Fe, Co, Ni, Zn and Cd Complexes, Cryst. Struct. Comm. 11, 257–261 (1982).
B. Kamenar, G. Jovanovski, D. Grdenić, Mercury(II) Saccharinate, Hg(C7H4NO3S)2, Cryst. Struct. Comm. 11, 263– 268 (1982).
G. Jovanovski, B. Kamenar, Two Ionic Saccharinates: (1a) Sodium Saccharinate 2/3 Hydrate, C7H4NO3SNa⋅2/3H2O, (1b) Magnesium Disaccharinate Heptahydrate, (C7H4NO3S)2Mg⋅7H2O, Cryst. Struct. Commun., 11, 247– 255 (1982).
F. A. Cotton, G, E. Lewis, C. A. Murillo, W. Schwotzer, G. Valle, Comparative Study of Structures, Including Jahn–Teller Effects, in the Saccharinate Complexes,
[M(C7H4NO3S)2(H2O)4]⋅2H2O, of Chromium and Zinc, as well as Other Divalent Metal Ions, Inorg. Chem., 23, 4038–4041 (1984).
S. Z. Haider, K. M. A. Malik, S. Das, M. B. Hursthouse, Structural Studies of Tetraaquabis(saccharinato- N)zinc(II) Dihydrate,
[Zn(C7H4NO3S)2(H2O)4]⋅2H2O, and Tetraaquabis(saccharinato-N)cadmium(II) Dihydrate,
[Cd(C7H4NO3S)2(H2O)4]⋅2H2O, Acta Crystallogr., C40, 1147–1150 (1984).
G. Jovanovski, A. Hergold-Brundić, B. Kamenar, Structure of Lead(II) Disaccharinate Monohydrate, Acta Crystallogr., C44, 63–66 (1988).
I. G. Binev, B. A. Stamboliyska, E. A. Velcheva, The Infrared Spectra and Structure of o-sulfobenzimide (Saccharin) and of Its Nitranion: An ab initio Force Field Treatment, Spectrochim. Acta, A52, 1135–1143 (1996).
P. Naumov, G. Jovanovski, On the Coordination in Metal Saccharinates, J. Coord. Chem. 54, 63–79 (2001).
P. Naumov, G. Jovanovski, An Update to the Combined Vibrational-Diffraction Experimental and Theoretical Studies of Small Biologically Important Cyclic Imides: Reference to Saccharin, Curr. Org. Chem. 5, 1059–1077 (2001).
G. Jovanovski, B. Kaitner, O. Grupče, P. Naumov, Crystal Structure, Infrared and Raman Spectra of Tripotassium Trisaccharinate Dihydrate, K3(C7H4NO3S)3⋅2H2O, Cent. Eur. J. Chem. 2, 254–275 (2004).
P. Naumov, G. Jovanovski, O. Grupče, B.Kaitner, D. A. Rae, S. W. Ng, Solid-State Structure and Temperature/ Evacuation-induced Dehydration of Sodium Saccharinate 1.875 hydrate, Angew. Chem. 44, 1251–1254 (2005).
E. J. Baran, The Saccharinate Anion: A Versatile and Fascinating Ligand in Coordination Chemistry, Quim. Nova, 28, 326–328 (2005).
P. Naumov, G. Jovanovski, S. Tančeva, S. W. Ng, Crystal Structure and Spectroscopic Characterization of Lithium Saccharinate 11/6 Hydrate, Hygroscopic and Potentially Physiologically Active Compound, Z. Anorg. Allg. Chem. 632, 454–460 (2006).
E. J. Baran, V. T. Yilmaz, Metal Complexes of Saccharin, Coord. Chem. Rev., 250, 1980–1999 (2006).
P. M. Bhatt, G. R. Desiraju, Crystal Structure of Na4Li4(saccharinate)8⋅14H2O and its Comparison with Other Alkali Metal Saccharinates, J. Mol. Struct., 871, 73–79 (2007).
W. C. Groutas, J. B. Epp, R. Venkataraman, R. Kuang, T. M. Truong, J. J. McClenahan, O. Prahash, Design, Synthesis, and In Vitro Inhibitory Activity Toward Human Leukocyte Elastase, Cathepsin G, and Proteinase 3 of Saccharin-Derived Sulfones and Congeners, Bioorg. Med. Chem., 4, 1393–1400 (1996).
J. M. Price, C. G. Biava, B. L. Oser, E. E. Vogin, J. Steinfeld, H. L. Ley, Bladder Tumors in Rats Fed Cyclohexylamine or High Doses of a Mixture of Cyclamate and Saccharin, Science, 167, 1131–1132 (1970).
http://www.fda.gov/fdac/features/1999/699_sugar.html
http://www.en.wikipedia.org/wiki/Sugar_substitute
http://www.saccharin.org/facts_policy.html
G. Jovanovski, D. Spasov, S. Tančeva, B. Šoptrajanov, Structural Characteristics of the Hydrates of the Saccharinates of Calcium, Strontium and Barium, Acta Chim. Slov. 43, 41–50 (1996).
G. Jovanovski, B. Šoptrajanov, Bonding of the Carbonyl Group in Metal Saccharinates: Correlation with the Infrared Spectra, J. Mol. Struct., 174, 467–472 (1988).
A. J. Jubert, R. P. Diez, S. B. Etcheverry, E. J. Baran, Raman, Pre-Resonance Raman and Electronic Spectra of Iron(II) Saccharinate, J. Raman Spectrosc., 23, 15–20 (1991).
G. Jovanovski, S. Tančeva, B. Šoptrajanov, The SO2 Stretching Vibrations in Some Metal Saccharinates: Spectra-structure Correlations, Spectrosc. Lett., 28, 1095–1109 (1995).
P. Naumov, G. Jovanovski, Spectra-structure Correlations in Solid Metal Saccharinates. I. The Carbonyl Stretchings, J. Mol. Struct., 563–564, 335–339 (2001).
P. Naumov, G, Jovanovski, Vibrational Study and Spectra- structure Correlations in Ammonium Saccharinate: Comparison with the Alkali Saccharinates, Spectrochim. Acta, A56, 1305–1318 (2000).
G. Jovanovski, B. Šoptrajanov, B. Kamenar, Spectrastructure Correlations in Some Metal Saccharinates, Bull. Chem. Technol. Macedonia, 8, 47–66 (1990).
W. R. Feairheller, J. E. Katon, The Vibrational Spectra and Molecular Configuration of Sulfolane, Spectrochim. Acta, 20, 1099–1108 (1964).
T. Uno, K. Machida, K. Hanai, Vibrational Spectra of Dimethyl Sulpholane and Dimethyl Sulphone-d6, Spectrochim. Acta, A27, 107–118 (1971).
O. V. Quinzani, S. Tarulli, O. E. Piro, Ej. J. Baran, E. E. Castellano, Crystal Structure, Vibrational Spectra and Thermal Analysis of Bis(saccharinato)bis(pyridine)zinc- (II), Z. Naturforsh., B52, 183–187 (1997).
Downloads
Published
How to Cite
Issue
Section
License
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.