Simple and efficient method for detection of traces of rare earth elements in minerals by raman spectroscopy instrumentation

Authors

  • Petre Makreski Institute of Chemistry, Faculty of Science, Ss. Cyril and Methodius University, Skopje
  • Gligor Jovanovski Macedonian Academy of Sciences and Arts, Skopje and Institute of Chemistry, Faculty of Science, Ss. Cyril and Methodius University, Skopje
  • Tomče Runčevski Institute of Chemistry, Faculty of Science, Ss. Cyril and Methodius University, Skopje
  • Radojko Jaćimović Jožef Stefan Institute, Ljubljana

DOI:

https://doi.org/10.20450/mjcce.2011.39

Keywords:

education, Raman spectroscopy, minerals, rare-earth elements

Abstract

As an effort to increase the knowledge about the abundance, distribution and geochemical behavior
of the rare earth elements (REEs), a simple and effective Raman spectroscopic method for detection of REEs
in minerals is proposed. The proposed method based on Raman spectroscopy provides a lower detection
limit for REEs compared to the modern analytical techniques. It could be practiced even in laboratories
equipped only with FT-Raman instrumentation. This simple, inexpensive, rapid and straightforward Raman
method for REEs detection in minerals is a convenient experiment for undergraduate and postgraduate
laboratory courses.

References

N.G. Connelly, T. Damhus, R.M. Hartshorn, A.T. Hutton, (Ed’s) Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005, RSC Publishing, Cambridge, 2005.

N. E. Topp, The Chemistry of the rare earth elements,In Topics in Inorganic and General Chemistry, Monograph 4; Elsevier, New York, 1965.

T. Moeller, Periodicity and the lanthanides and actinides, J. Chem. Educ. 47, 417 (1970).

S. Peterson, The rare elements in freshman chemistry, J. Chem. Educ. 26, 378−379 (1949).

R.K. McAlpine, A.A. Noyes, W.C. William, A System of Qualitative Analysis for the Rare Elements, J. Chem. Educ. 5, 109–110 (1928).

M.E. Weeks, The discovery of the elements. XVI. The rare earth elements, J. Chem. Educ. 9, 1751−1774 (1932).

A.R. Clark, Test-tube flame test applied to the rarer elements, J. Chem. Educ. 13, 338−339 (1936).

L.S. Foster, Structure of the rare earth elements, J.Chem. Educ. 17, 448 (1940).

T. Chao, J. Yang, Rarer elements I. Tungsten, J. Chem. Educ. 25, 388−389 (1948).

T. Chao, S. Chen, Rarer elements II. Uranium, J.Chem. Educ. 25, 686−387 (1948).

M.O. Workman, Preparation of a fluorescent rare earth complex. A general chemistry experiment, J.Chem. Educ. 48, 303 (1971).

E.D. Cater, High temperature chemistry of rare earth compounds: Dramatic examples of periodicity, J.Chem. Educ. 55, 697–701 (1978).

G.L. Silver, Reactions of Rare Earth Metals, J. Chem. Educ. 72, 956 (1995).

A.P. Jones, F. Wall, C.T. Williams (Ed’s), Rare earth minerals: chemistry, origin and ore deposits, Mineralogical Society Series 7; Chapman and Hall, London, 1996.

M. Gaspar, C. Knaack, L.D. Neinert, R. Moretti, Micro-Raman spectra of ugrandite garnet, Geochim. Cosmochim. Acta 72, 185−205 (2008).

B. Chase, in Fourier Transform Near-infrared Raman Spectroscopy. In: Handbook of Vibrational Spectroscopy, Volume I, Theory and Instrumentation, J. Chalmers, P. Griffiths, Eds., Wiley-VCH, New York, 2001.

P. Makreski, G. Jovanovski, Minerals from Macedonia. XXII. Laser-induced fluorescence bands in the FT-Raman spectrum of almandine mineral, J. Raman Spectrosc. 39, 1210−1213 (2008).

C.D. Dyer, P.J. Hendra, The Raman spectroscopy of cement minerals under 1064 nm excitation, Spectrochim. Acta 49A, 715–722 (1993).

E.L. Varetti, E.J. Baran, Raman or fluorescence spectra? About the use of FT-Raman techniques on inorganic compounds, Appl. Spectrosc. 48, 1028–1029 (1994).

A. Aminzadeh, Fluorescence bands in the FT-Raman spectra of some calcium minerals, Spectrochim. Acta 53A, 693–697 (1997).

H. Tsuda, J. Arias, B. Leon, A. Arends, Necessary Precautions in the Raman Analysis of Calcium Phosphate Minerals Using 1.06 Mu M Yag Laser Excitation, J. Appl. Spectrosc. 52, 1122–1126 (1998).

A. Aminzadeh, S. Shahabi, L.J. Walsh, Raman spectroscopic studies of CO2 laser-irradiated human dental enamel, Spectrochim. Acta 55A, 1303–1308 (1999).

A. Aminzadeh, M. Meskinfarm, S.F. Tayyary, Laser induced fluorescence bands in the FT-Raman spectra of bioceramics, Spectrochim. Acta 66A, 199–205 (2007).

HyperLab 2002 System, Installation and Quick Start Guide, HyperLabs Software, Budapest, Hungary (2002).

R. Jaćimović, B. Smodiš, T. Bučar, P. Stegnar, K-0-NAA quality assessment by analysis of different certified reference materials using the KAYZERO/SOLCOI software, J. Radioanal. Nucl. Chem. 257, 659–663 (2003).

User’s Manual Kayzero for Windows V2.23 Software Package, for Reactor Neutron Activation Analysis (NAA) Using the k0 Standardization Method, supported and distributed by k0-ware, Heerlen, The Netherlands, 2009.

D.B. Galloway, E.L. Ciolkowski, R.F. Dallinger, Raman spectroscopy for the undergraduate physical and analytical laboratories, J. Chem. Educ. 69, 79–83 (1992).

A. Aponick, E. Marchozzi, C. Johnston, C.T. Wigal, Determining the Authenticity of Gemstones Using Raman Spectroscopy, J. Chem. Educ. 75, 465–466 (1998).

L.C.O. O’Brien, R.L. Kubicek, J.J. O’Brien, Laser Raman Spectroscopy of Diamond, J. Chem. Educ. 71, 759–760 (1994).

F.P. DeHaan, J.C. Thibeault, D.K. Ottesen, Raman spectra of ZXY3 compounds: A dry-lab spectral analysis experiment, J. Chem. Educ. 51, 263–265 (1974).

M.R. Mudiam, S.A. Kumar, S. Mahadevan, P. Ghosh, R.K. Sarin, S.R. Beedu, Quantitative evaluation of 28 mineral elements by inductively coupled plasma/mass spectrometry and its application in source identification of Indian opium, J. AOAC Int. 88, 1469–1484 (2005).

M.N. Rimskaya-Korsakova, A.V. Dubinin, V.M. Ivanov, Determination of rare-earth elements in sulfide minerals by inductively coupled plasma mass spectrometry with ion-exchange preconcentration, J. Anal. Chem. 58, 870–874 (2003).

Y. Hu, F. Vanhaecke, L. Moens, R. Dams, P. Del Castilho, J. Japenga, Determination of the aqua regia soluble content of rare earth elements in fertilizer, animal fodder phosphate and manure samples using inductively coupled plasma mass spectrometry, Anal. Chim. Acta 373, 95–105 (1998).

M. Barbaro, B. Passariello, S. Quaresima, A. Casciello, A. Marabini, Analysis of Rare-Earth Elements in Rock Samples by Inductively-Coupled Plasma-Mass Spectrometry (Icp-Ms), Microchem. J., 51, 312–318 (1995).

S. Chenery, J.M. Cook, Determination of rare earth elements in single mineral grains by laser ablation microprobe-inductively coupled plasma mass spectrometry-preliminary study, J. Anal. At. Spectrom. 8, 299–303 (1993).

A.M. Marabini, B. Passariello, M. Barbaro, Determination of Rare-Earth Elements in Minerals and Ores by Inductively Coupled Plasma-Mass Spectrometry (Icp-Ms), Mater. Chem. Phys. 31, 101–106 (1992).

U. Siewers, Inductively coupled plasma/mass spectrometry in geochemistry, Mikrochim. Acta 99, 365–372 (1989).

F.E. Lichte, A.L. Meier, J.G. Crock, Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry, Anal. Chem. 59, 1150–1157 (1987).

L. Muia, R. Van Grieken, Determination of rare earth elements in geological materials by total reflection X-ray fluorescence, Anal. Chim. Acta 251, 177–181 (1991).

I. Roelandts, Determination of light rare earth elements in apatite by X-ray fluorescence spectrometry after anion exchange extraction, Anal. Chem. 53, 676–680 (1981).

G. N. Eby, Determination of rare-earth, yttrium, and scandium abundances in rocks and minerals by an ion exchange-X-ray fluorescence procedure, Anal. Chem. 44, 2137–2143 (1972).

H. Kunzendorf, H. A. Wollenberg, Determination of Rare-Earth Elements in Rocks by Isotope-Excited X-Ray Fluorescence Spectrometry, Nucl. Instrum. Methods 87, 197–203 (1970).

C.S. Tsai, S.J. Yeh, Determination of rare earth elements in Taiwan monazite by chemical neutron activation analysis, J. Radioanal. Nucl. Chem. 216, 241–245 (1997).

P. Makreski, R. Jaćimović, V. Stibilj, T. Stafilov, G. Jovanovski, Determination of trace elements in iron minerals by instrumental and radiochemical neutron activation analysis, Radiochim. Acta 96, 855–862 (2008).

P. Makreski, R. Jaćimović, V. Stibilj, T. Stafilov, Determination of major and trace elements in ironnickel-copper-cobalt ore reference materials using k0-NAA, Radiochim. Acta 97, 643–649 (2009).

E.H. Borai, A.S. Mady, Separation and quantification of 238U, 232Th and rare earths in monazite samples by ion chromatography coupled with on-line flow scintillation detector, Appl. Radiat. Isot. 57, 463–469 (2002).

S.J.B. Reed, Ion microprobe determination of rare earth elements in accessory minerals, Mineral. Mag. 50, 3–15 (1986).

E.H. Borai, M.A. Eid, H.F. Aly, Determination of REEs distribution in monazite and xenotime minerals by ion chromatography and ICP-AES, Anal. Bioanal. Chem. 372, 537–541 (2002).

N.P.O. Homman, C. Yang, K.G. Malmqvist, A highly sensitive method for rare-earth element analysis using ionoluminescence combined with PIXE, Nucl. Inst. Methods Phys. Res. A 353, 610–614 (1994).

J.J.G. Durocher, N.M. Halden, F.C. Hawthorne, J.S.C. McKee, PIXE and Micro-Pixe Analysis of Minerals at Ep=40 Mev, Nucl. Inst. Methods Phys. Res. B 30, 470–473 (1988).

S.K. Sengupta, N.P. Nathan, V. Ganesan, S. Shome, Detection of rare-earth-mineral phases by scanning electron microscopy/energy dispersive X-rays (SEM/EDX) in the alkaline complexes of Tamil Nadu, Indian Miner. 59, 99–114 (2005).

V.B. Baryshev, A.E. Gilbert, O.A. Kozmenko, G.N. Kulipanov, K.V. Zolotarev, Determination of the Concentrations and Distributions of Rare-Earth Elements in Mineral and Rock Specimens using the Vepp-4 Synchrotron Radiation, Nucl. Inst. Methods Phys. Res. A 261, 272–278 (1987).

P. Vandenabeele, H.G.M. Edwards, L. Moens, A decade of Raman spectroscopy in art and archaeology, Chem. Rev. 107, 675–686 (2007).

L. Burgio, R.J. Clark, Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation, Spectrochim. Acta A57, 1491–1521 (2001).

A. Wang, J.Y. Han, L.H. Guo, J.Y. Yu, P. Zeng, Database of Standard Raman-Spectra of Minerals and Related Inorganic Crystals, Appl. Spectrosc. 48, 959–968 (1994).

M. Bouchard, D.C. Smith, Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass, Spectrochim. Acta A59, 2247–2266 (2003).

K. Castro, M. Perez-Alonso, M.D. Rodriguez-Laso, L.A. Fernandez, J. M. Madariaga, On-line FT-Raman and dispersive Raman spectra database of artists’ materials (e-VISART database), Anal. Bioanal. Chem. 382, 248–258 (2005).

http://rruff.info/, http://www.chem.ucl.ac.uk/resources/raman/index.html, http://wwwobs.univ-bpclermont.fr/sfmc/ramandb2/index.html, http://www.ens-lyon.fr/LST/Raman/index.php, http://www.fis.unipr.it/phevix/ramandb.php, http://oldweb.ct.infn.it/~archeo/, http://www.ehu.es/udps/database/database.html, http://riodb.ibase.aist.go.jp/db092/E_index_list.html, http://www.ijvs.com/spectra/spectra.html, http://www.geocities.ws/ostroum/FTRAMAN.htm (all accessed June 2011).

A. Gajović, N. Tomašić, I. Djerdj, D.S. Su, K. Furić, Influence of mechanochemical processing to luminescence properties in Y2O3 powder, J. Alloys Compd. 456, 313–319 (1997).

D.L. Andrews, Lasers in Chemistry; Sprigner, Berlin, 1997.

P. Modreski, Ultraviolet fluorescence in minerals, J. New Mexico Geol. 9, 25–30 (1987).

Downloads

Published

2011-12-05

How to Cite

Makreski, P., Jovanovski, G., Runčevski, T., & Jaćimović, R. (2011). Simple and efficient method for detection of traces of rare earth elements in minerals by raman spectroscopy instrumentation. Macedonian Journal of Chemistry and Chemical Engineering, 30(2), 241–250. https://doi.org/10.20450/mjcce.2011.39

Issue

Section

Education

Most read articles by the same author(s)