Determination of trace elements in chalcopyrite (CuFeS<sub>2</sub>) by k<sub>0</sub>-instrumental neutron activation analysis after matrix elements removal

Authors

  • Milena Taseska Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril & Methodius University, Skopje
  • Petre Makreski Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril & Methodius University, Skopje
  • Vekoslava Stibilj Jožef Stefan Institute, P.O. Box 3000, SI-1001 Ljubljana
  • Radojko Jaćimović Jožef Stefan Institute, P.O. Box 3000, SI-1001 Ljubljana
  • Trajče Stafilov Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril & Methodius University, Skopje
  • Gligor Jovanovski Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril & Methodius University, Skopje and Macedonian Academy of Sciences and Arts, Skopje

DOI:

https://doi.org/10.20450/mjcce.2008.234

Keywords:

chalcopyrite, trace elements, neutron activation analysis, k0-INAA

Abstract

A method for trace elements determination in chalcopyrite, CuFeS2, by k0-instrumental neutron activation analysis (k0-INAA) was proposed. To avoid the interference of iron and copper as matrix elements, methods for their separation were applied. The copper interferences were eliminated by applying an electrolytic separation method. To eliminate iron interferences, a liquid-liquid extraction procedure by diisopropyl ether (DIPE) in hydrochloric acid solution and determination of trace elements in the aqueous phase were undertaken. The k0-INAA method was applied to determine the content of the investigated elements, making it possible to follow the distribution of even fifty elements (with intermediate/medium and long half-lived radionuclides) in the studied mineral. The important advantage of the proposed method is the possibility to determine the content of several trace elements after Fe and Cu separation. Additionally, the elimination of the matrix elements lowered the limit of detection for some trace elements in the water phase compared to their corresponding values determined by k0-INAA in the powder sample.

References

J. R. Castillo, M. J. Mir, M. L. Martinez, T. Gomez, Study of the composition of siliceous material by AAS, At. Spectrosc., 9, 9–12 (1988).

J. G. Viets, M. R. O'Leary, R. J. Clark, Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry, Analyst, 109, 1589– 1592 (1984).

R. Eidecker, E. Jackwerth, Multielement preconcentration from iron and iron compounds, Fresenius' Z. Anal. Chem., 331, 401–407 (1988).

J.S. Barros, Determination of antimony, arsenic, bismuth, cadmium, cobalt and silver in complex sulphide minerals by flame atomic absorption spectrometry, Analyst, 114, 369–373 (1989).

A. Lazaru, T. Stafilov, Determination of copper in sulfide minerals by Zeeman electrothermal atomic absorption spectrometry, Fresenius’ J. Anal. Chem., 360, 726–728 (1998).

T. Stafilov, Determination of trace elements in minerals by electrothermal atomic absorption spectrometry, Spectrochim. Acta, 55B, 893–906 (2000).

A. Lazaru, T. Stafilov, Determination of Co, Ni and Pb in arsenic minerals by Zeeman electrothermal atomic absorption spectrometry, Bull. Chem. Technol. Macedonia, 19 (1), 21–26 (2000).

D. Zendelovska, T. Stafilov, Extraction separation and electrothermal atomic absorption spectrometric determination of thallium in some sulfide minerals, Anal. Sci., 17, 425–428 (2001).

M. Benzaazoua, P. Marion, L. Liouville-Bourgeois, R. Joussemet, R. Houot, A. Franco, A. Pinto, Mineralogical distribution of some minor and trace elements during a laboratory flotation processing of Neves-Corvo ore (Portugal), Int. J. Miner. Process. 66, 163–181 (2002).

M. Taseska, T. Stafilov, P. Makreski, G. Jovanovski, Determination of trace elements in some copper minerals by atomic absorption spectrometry, Ovidius University Annals of Chemistry, 16, 43–46 (2005).

Q. L. Li, J. X. Zhu, Q. Ying, Z. W. Mao, C. S. Wang, J. L. Chen, The application of trace element analysis to the study of provenance of copper minerals in ancient bronzes, Spectrosc. Spectral Anal., 25, 1700–1702 (2005).

M. A. E. Huminicki, P. J. Sylvester, L. J. Carbi, C. M. Lesher, M. Tubrett, Quantitative hass balance of platinum group elements in the Kelly Lake Ni-Cu-PGE deposit Copper Cliff offset, Sudbury, Economic Geology, 100, 1631–1646 (2005).

M. Varadi, S. Szegedi, J. Csikai, Determination of Cu in minerals by 14-MeV neutron-activation analysis and radiochemical separation, J. Radioanal. Nucl. Chem., 107, 253–262 (1986).

T. Todorov, NAA analysis of gold in minerals from upper cretaceous massive copper-deposits in Bulgaria, Terra Nova, 3, 311–316 (1991).

E. Frantz, H. Palme, T. Wolfgang, A. El Goresy, M. Pavićević, Geochemistry of Tl-As minerals and host rocks at Allchar (Macedonia), N. Jb. Miner. Abh, 167, 359–399 (1994).

L. Raimbault, H. Peycelon, J.L. Joron, Single-crystal trace element analysis in rock-forming minerals by instrumental neutron activation analysis, J. Radioanal. Nucl. Chem., 216, 221–228 (1997).

N. A. Sharara, G. C. Wilson, J. C. Rucklidge, Platinumgroup elements and gold in Cu-Ni-mineralized peridotite at Gabbro Akarem, Eastern Desert, Egypt, Can. Mineral., 37, 1081–1097 (1999).

R. Jaćimović, A. Lazaru, D. Mihajlović, R. Ilić, T. Stafilov, Determination of major and trace elements in some minerals by k0-instrumental neutron activation analysis, J. Radioanal. Nucl. Chem., 253, 427–434 (2002).

R. Jaćimović, P. Makreski, V. Stibilj, T. Stafilov, G. Jovanovski, Characterization of some iron minerals from the Republic of Macedonia using instrumental neutron activation analysis, Geologica Macedonica, 19, 33–38 (2005).

P. Makreski, R. Jaćimović, V. Stibilj, T. Stafilov, G. Jovanovski, Determination of Trace elements in iron minerals by instrumental and radiochemical neutron activation analysis, Radiochim. Acta, 96, 855–861 (2008).

R. Jaćimović, B. Smodiš, T. Bučar, P. Stegnar, k0-NAA quality assessment by analysis of different certified reference materials using the KAYZERO/SOLCOI software, J. Radioanal. Nucl. Chem., 257, 659–663 (2003).

HyperLab 2002 System, Installation and quick start guide, HyperLabs Software, Budapest, Hungary, 2002.

User’s Manual KAYZERO/SOLCOI® Version 5a software package, 2003: KAYZERO/SOLCOI for reactor neutron activation analysis (NAA) using the k0 standardization method, Published by DSM Research, Geleen (NL), developed at the INW-RUG, Gent (B) and the KFKI, Budapest (H).

Downloads

Published

2008-12-15

How to Cite

Taseska, M., Makreski, P., Stibilj, V., Jaćimović, R., Stafilov, T., & Jovanovski, G. (2008). Determination of trace elements in chalcopyrite (CuFeS<sub>2</sub>) by k<sub>0</sub>-instrumental neutron activation analysis after matrix elements removal. Macedonian Journal of Chemistry and Chemical Engineering, 27(2), 141–147. https://doi.org/10.20450/mjcce.2008.234

Issue

Section

Analytical Chemistry

Most read articles by the same author(s)

> >>