Mechanochemical synthesis and solid-state characterization of molecular salts of pyridoxine: Vibrational spectroscopic and thermal consideration

Authors

  • Aleksandar Cvetkovski Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia https://orcid.org/0000-0002-8827-0245
  • Ljupcho Pejov Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia; Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4021 Stavanger, Norway; The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, AZ, USA https://orcid.org/0000-0002-0108-3413
  • Monika Stojanovska Pecova eResearch and Development, Alkaloid AD, Blvd. Aleksandar Makedonski 12, Skopje, North Macedonia https://orcid.org/0000-0002-5698-1624
  • Gjorgji Petrushevski Quality Control Department, Alkaloid AD, Blvd. Aleksandar Makedonski 12, Skopje, North Macedonia https://orcid.org/0000-0002-9493-0457
  • Petre Makreski Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia https://orcid.org/0000-0003-0662-5995

DOI:

https://doi.org/10.20450/mjcce.2024.2989

Keywords:

pyridoxine, molecular salts, spectroscopy, solid-state properties

Abstract

Crystal engineering of multicomponent crystals offers opportunities for both generic active pharmaceutical ingredients (APIs) and innovative APIs (under patent protection) to be noncovalently bound with a wide range of organic compounds, forming new solid phases such as salts or cocrystals. These multicomponent crystals can enhance the physicochemical properties, processibility, and bioavailability of the APIs. The purpose of this research is to correlate vibrational (FTIR and Raman) spectroscopy studies with the thermal behavior of new molecular salts of the drug model pyridoxine (PN), using salt formers from the group of hydroxybenzoic acid derivatives known for their potent antioxidant activity. The coformers include syringic acid (SA) and ferulic acid (FA), synthesized through eco-friendly mechanochemical methods by treating bulk powders of their stoichiometric mixture with PN. The assigned vibrational modes and thermal behaviors of the pyridoxonium syringate (PN/SA) and pyridoxonium ferulate (PN/FA∙H2O) reveal the protonation of the pyridoxine N-atom in both salts structures. This protonation results in structural alterations in the crystal packing of the counterions, which exhibit unique spectral fingerprints and thermal profiles compared to the starting compounds.

Author Biography

Ljupcho Pejov, Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia; Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4021 Stavanger, Norway; The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, AZ, USA

 

 

 

References

(1) Prohotsky, D.L., Zhao, F. A survey of top 200 drugs--inconsistent practice of drug strength expression for drugs containing salt forms. J. Pharm. Sci. 2012, 101(1) 1-6. https://doi.org/10.1002/jps.22735

(2) Paulekuhn, G.S., Dressman, J.B., Saal, C. Trends in active pharmaceutical ingredient salt selection based on analysis of the Orange Book database. J. Med. Chem. 2007, 50(26), 6665-72. https://doi.org/10.1021/jm701032y.

(3) Morris, K.R., Fakes, M.G., Thakur, A.B., Newman, A.W., Singh, A.K., Venit, J.J., Spagnuolo, C.J., Serajuddin, A.T.M. An Integrated approach to the selection of optimal salt form for a new drug candidate. Int. J. Pharm., 1994, 105, 209-217. https://doi.org/10.1016/0378-5173(94)90104-X

(4) Tong, W-Q, Whitesell, G. In situ salt screening – a useful technique for discovery support and preformulation studies. Pharm. Dev. Tech., 1998, 3, 215-223. https://doi.org/10.3109/10837459809028498

(5) Bastin, J., Bowker, J.M., Slater, J.B. Salt Selection and optimisation procedures for pharmaceutical new chemical entities. Org. Process Res. Dev 2000, 4(5), 427-435 https://doi.org/10.1021/op000018u

(6) Sacchetti, M. General equations for in situ salt screening of multibasic drugs in multiprotic acids. Pharm. Dev. Tech., 2000, 5, 579-582. https://doi.org/10.1081/PDT-100102042

(7) Ware, E.C., Lu, D.R. An automated approach to salt selection for new unique trazodone salts. Pharm. Res., 2004, 21, 177-184. https://doi.org/10.1023/B:PHAM.0000012167.60180.c3

(8) Hammond, R.B. Hashim, S. R.; Ma, C.; Roberts. J.K. Grid-based molecular modeling for pharmaceutical salt screening: case example of 3,4,5,7,8,9-hexahydro-2H-pyrimido-(1,2-a)-primidinium acetate. J. Pharm. Sci., 2006, 95(11), 2361–2372. https://doi.org/10.1002/jps.20657

(9) Black, S.N., Collier, E.A., Davey, R,J., Roberts, R.J. Structure, solubility, screening, and synthesis of molecular salts. J Pharm Sci., 2007, 96(5), 1053-68. https://doi.org/10.1002/jps.20927 .

(10) Elder, D.P., Delaney, E., Teasdale, A., Eyley, S., Reif, V.D., Jacq, K., Facchine, K.L., Oestrich, R.S., Sandra, P., David, F. The utility of sulfonate salts in drug development. J. Pharm. Sci., 2010, 99, 2948–2961. https://doi.org/10.1002/jps.22058

(11) Morissette, S.L., Almarsson, O., Peterson, M.L., Remenar, J.F., Read, M.J., Lemmo, A.V., Ellis, S., Cima, M.J., Gardner, C.R. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv. Drug Deliv. Rev. 2004, 56(3), 275-300. https://doi.org/10.1016/j.addr.2003.10.020

(12) Guerrieri, P., Rumondor, A.C., Li, T., Taylor, L.S, Analysis of relationships between solid-state properties, counterion, and developability of pharmaceutical salts. AAPS PharmSciTech. 2010, 11(3), 1212-22. https://doi.org/10.1208/s12249-010-9499-4

(13) Gupta, D., Bhatia, D, Dave, V, Sutariya, V., Varghese, S.G. Salts of therapeutic agents: chemical, physicochemical, and biological considerations. Molecules. 2018, 23(7), 1719. https://doi.org/10.3390/molecules23071719

(14) Verbeek, R.K., Kanfer, I., Walker, R.B. Generic substitution: the use of medicinal products containing different salts and implications for safety and efficacy. Eur J Pharm Sci., 2006, 28, 1–6. https://doi.org/10.1016/j.ejps.2005.12.001

(15) Patel, A., Jones, S. A., Ferro, A., Patel, N. Pharmaceutical salts: a formulation trick or a clinical conundrum? Br. J. Cardiol 2009, 16, 281-286. https://bjcardio.co.uk/2009/11/pharmaceutical-salts-a-formulation-trick-or-a-clinical-conundrum/

(16) Gilli, P., Pretto, L., Bertolasi, V., Gilli, G. Predicting hydrogen-bond strengths from acid−base molecular properties. The pKa slide rule: toward the solution of a long-lasting problem. Acc. Chem. Res. 2009, 42, 33-44. https://doi.org/10.1021/jp904812b

(17) Gilli, P., Gilli, G. Hydrogen bond models and theories: The dual hydrogen bond model and its consequences. J. Mol. Struct. 2010, 972, 2-10. https://doi.org/10.1016/j.molstruc.2010.01.073

(18) Cruz-Cabeza, J.A. Acid–base crystalline complexes and the pKa rule. CrystEngComm 2012, 14, 6362-6365. https://doi.org/10.1039/C2CE26055G

(19) Nangia, A. Supramolecular chemistry and crystal engineering. J. Chem. Sci. 2010, 122(3), 295-310. https://doi.org/10.1007/s12039-010-0035-6

(20) Almarsson, O., Zaworotko, M.J. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? 2004, Chem. Commun. 7(17), 1889-96. https://doi.org/10.1039/B402150A

(21) Elder, D.P., Holm, R., de Diego H.L. Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. Int. J. Pharm., 2012, 453, 88-100. https://doi.org/10.1016/j.ijpharm.2012.11.028

(22) Berry, J. D., Steed, W.J. Pharmaceutical cocrystals, salts and multicomponent systems, intermolecular interactions and property based design, Adv. Drug Deliv. Rev 2017, 1(117), 3-24. https://doi.org/10.1016/j.addr.2017.03.003

(23) Desiraju, R.G., Crystal engineering: from molecule to crystal. J. Am. Chem. Soc. 2013, 135(27), 9952-9967 https://doi.org/10.1021/ja403264c

(24) Childs, L.S., Patrick G.S., Park, A. The salt−cocrystal continuum: the influence of crystal structure on ionization state, Mol. Pharmaceutics 2007, 4(3), 323-338. https://doi.org/10.1021/mp0601345

(25) Aakeröy, C.B., Fasulo, M.E., Desper, J. Cocrystal or salt: does it really matter? Mol. Pharmaceutics 2007, 4(3), 317-22. https://doi:10.1021/mp060126o

(26) Aitipamula, S. et al. Polymorphs, salts, and cocrystals: what's in a name? Cryst. Growth Des. 2012, 12(5), 2147–2152. https://doi.org/10.1021/cg3002948

(27) Haynes, D.A., Jones, W., Motherwell, W.D.S. Occurrence of pharmaceutically acceptable anions and cations in the cambridge structural database. J. Pharm. Sci. 2005, 94(10), 2111–2120. https://doi.org/10.1002/jps.20441

(28) Grothe, E., Meekes, H., Vlieg, E., ter Horst, J. H., de Gelder R. Solvates, salts, and cocrystals: a proposal for a feasible classification system, Cryst. Growth Des. 2016, 16(6), 3237-3243. https://DOI:10.1021/acs.cgd.6b00200

(29) Ranjit, T., Sarma, B. Drug drug and drug nutraceutical cocrystal/salt as alternative medicine for combination therapy: a crystal engineering approach. Crystals 2018, 8(2), 101. https://doi.org/10.3390/cryst8020101

(30) Fulas, O.A, Laferrière, A., Ayoub, G., Gandrath, D., Mottillo, C., Titi, H.M., Stein, R.S., Friščić, T., Coderre, T.J. Drug-nutraceutical co-crystal and salts for making new and improved bi-functional analgesics. Pharmaceutics 2020, 12, 1144. https://doi.org/10.3390/pharmaceutics12121144

(31) Jin, S., Haskins, M.M., Deng, C.-H., Matos C.R.M.O., Zaworotko, J.M. Crystal engineering of ionic cocrystals comprising Na/K salts of hesperetin with hesperetin molecules and solubility modulation, IUCrJ 2023, 10, 329-340. https://doi:10.1107/S205225252300266X

(32) Hasa, D., Perissutti, B., Cepek, C., Bhardwaj, S., Carlino, E., Grassi, M., Invernizzi, S., Voinovich, D. Drug salt formation via mechanochemistry: the case study of vincamine Mol. Pharmaceutics 2013, 10(1), 211-224. https://dx.doi.org/10.1021/mp300371f.

(33) Solares-Briones, M., Coyote-Dotor, G., Páez-Franco, J.C., Zermeño-Ortega, M.R.,, de la O Contreras, C.M., Canseco-González, D., Avila-Sorrosa, A, Morales-Morales, D., Germán-Acacio, J.M. Mechanochemistry: a green approach in the preparation of pharmaceutical cocrystals. Pharmaceutics 2021, 25, 13(6):790. https://doi.org/10.3390/pharmaceutics13060790

(34) Cvetkovski, A., Ferretti, V., Bertolasi, V. New pharmaceutical salts containing pyridoxine Acta Cryst. 2017, C73, 1064–1070. https://doi.org/10.1107/S2053229617015765

(35) Hayashi, H., Wada, H., Yoshimura, T., Esaki, N., Soda, K. Recent topics in pyridoxal 5'-phosphate enzyme studies. An. Rev. Biochem. 1990, 59, 87-110. https://doi:10.1146/annurev.bi.59.070190.000511

(36) Ebadi, M. Regulation and function of pyridoxal phosphate. CNS Neurochem. Int. 1981, 3(3-4), 181-205. https://doi:10.1016/0197-0186(81)90001-2

(37) Seiler, D., Doser, K., Salem, I. Relative bioavailability of prasugrel free base in comparison to prasugrel hydrochloride in the presence and in the absence of a proton pump inhibitor. Arzneimittelforschung 2011, 61, 247–251. https://doi:10.1055/s-0031-1296195

(38) Stahl, P.H., Skinner, F.S. Pharmaceutical aspects of the API salt form. In: Stahl P.H., Wermuth C.G., editors. Pharmaceutical Salts: Properties, Selection, and Use. 2nd ed. WILEY-VCH, Weinheim, Germany: 2011. pp. 85–124.

(39) Teraoka, R., Otsuka, M., Matsuda, Y. Effects of temperature and relative humidity on the solid-state chemical stability of ranitidine hydrochloride. J. Pharm. Sci. 1993, 82 (6), 601–604. https://doi:org/10.1002/jps.2600820611

(40) Thakral, K.N., Behme, J.R., Aburub, A., Peterson, A.J., Woods, A.T., Diseroad, A.B., Suryanarayanan, R., Stephenson, A.G. Salt disproportionation in the solid state: role of solubility and counterion volatility, Mol. Pharmaceutics 2016, 13(12), 4141–4151 https://DOI:10.1021/acs.molpharmaceut.6b00745

(41) Remenar, F.J, MacPhee, J.M., Larson, K.B., Tyagi, A.V., Ho, H.J., McIlroy, A.D., Hickey, B.M., Shaw, B.P., Almarsson, Ö. Salt selection and simultaneous polymorphism assessment via high-throughput crystallization: the case of sertraline. Org. Proc. Res. Dev. 2003 7(6), 990–996 https://DOI:10.1021/op034115

(42) Srinivasulu, C., Ramgopal, M., Ramanjaneyulu, G., Anuradha, C.M., Kumar C.S. Syringic acid (sa) ‒ a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed.Pharmacother. 2018, 108, 547-557. https://DOI:10.1016/j.biopha.2018.09.069

(43) Ogut, E., Armagan, K., Gül, Z. The role of syringic acid as a neuroprotective agent for neurodegenerative disorders and future expectations. Metab. Brain Dis. 2022, 37(4), 859-880. https://doi:10.1007/s11011-022-00960-3

(44) Srinivasan, M., Sudheer, R.A., Menon, P.V., Ferulic acid: therapeutic potential through its antioxidant property, J. Clin. Biochem. Nutr, 2007, 40(2), 92-100. https://doi.org/10.3164/jcbn.40.92

(45) Chatterjee, N.S., Anandan, R., Navitha, M., Asha, K.K., Kumar, K.A., Mathew, S., Ravishankar, C.N. Development of thiamine and pyridoxine loaded ferulic acid-grafted chitosan microspheres for dietary supplementation. J. Food Sci. Technol. 2016 53(1), 551-560. https://doi:10.1007/s13197-015-2044-4

(46) Sentkowska, A., Piwowarczyk, S., Pyrzyńska, K. Simultaneous determination of vitamin B6 and catechins in dietary supplements by ZIC-HILIC chromatography and their antioxidant interactions. Eur. Food Res. Technol. 2020, 246, 1609–1615 (). https://doi.org/10.1007/s00217-020-03516-w

(47) Kaduk, J.A., Billinge, S.J.L., Dinnebier, R.E. et al. Powder diffraction. Nat Rev Methods Primers 2021, 1, 77. https://doi.org/10.1038/s43586-021-00074-7

(48) Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, Th., Suhai, S., Seifert, G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268. https://doi.org/10.1103/PhysRevB.58.7260

(49) Gauss, M., Cui, Q., Elstner, M. DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). J. Chem. Theory Comput. 2011, 7, 931–948. https://doi.org/10.1021/ct100684s

(50) Hourahine, B., Aradi, B., Blum, V., Bonafé, F., Buccheri, A., Camacho, C., Cevallos, C., Deshaye, M.Y., Dumitrică, T., Dominguez, A., et al. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 2020, 152, 124101. https://doi.org/10.1063/1.5143190.

(51) Gaus, M., Goez, A., Elstner, M. Parametrization and benchmark of DFTB3 for organic molecules. J. Chem. Theory Comput. 2013, 9, 338–354. https://doi.org/10.1021/ct300849w.

(52) Gaus, M., Lu, X., Elstner, M., Cui, Q. Parametrization of DFTB3/3OB for sulfur and phosphorus for chemical and biological applications. J. Chem. Theory Comput. 2014, 10, 1518–1537. https://doi.org/10.1021/ct401002w.

(53) Kubillus, M., Kubar, T., Gaus, M., Rezac, J., Elstner, M. Parametrization of the DFTB3 Method for Br, Ca, Cl, F, I, K and Na in organic and biological systems. J. Chem. Theory Comput. 2015, 11, 332–342. https://doi.org/10.1021/jp506557r

(54) Monkhorst, H.J., Pack, J.D., Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. https://doi.org/10.1103/PhysRevB.13.5188.

(55) Šebek, J., Knaanie, R., Albee, B., Potma, O.E, Gerber, R.B. Spectroscopy of the C–H stretching vibrational band in selected organic molecules. J. Phys. Chem. A 2013, 117(32), 7442–7452 https://doi.org/10.1021/jp4014674

(56) Szafran, M., Koput J. Ab initio and DFT calculations of structure and vibrational spectra of pyridine and its isotopomers J. Mol. Struct., 2001, 565–566, 439-448 https://doi.org/10.1016/S0022-2860(00)00934-0

(57) Srivastava, M., Rani, P., Singh, N.P., Yadav, R.A. Experimental and theoretical studies of vibrational spectrum and molecular structure and related properties of pyridoxine (vitamin B6). Spectrochim Acta A Mol Biomol Spectrosc. 2014, 120, 274-86. https://doi:10.1016/j.saa.2013.09.133

(58) Cinta, S., Morari, C., Vogel, E., Maniu, D., Aluas, M., Iliescu, T., Cozar, O., Kiefer, W. Vibrational studies of B6 vitamin. Vib. Spectrosc. 1999, 19, 329–334. https://doi.org/10.1016/S0924-2031(99)00019-3

(59) Varsányi, G. Assignment for vibrational spectra of seven hundred benzene derivatives, Adam Hilger: London, 1974, 1, pp 280.

(60) Clavijo, R.E., Ross, D.J., Aroca, R.F. Surface enhanced Raman scattering of trans-p-coumaric and syringic acids. J. Raman Spectrosc., 2009, 40, 1984-1988. https://doi.org/10.1002/jrs.2353

(61) Mohammed-Ziegler, I., Billes, F. Vibrational spectroscopic calculations on pyrogallol and gallic acid. J. Mol. Struct. Theochem 2002, 259–265 https://doi.org/10.1016/S0166-1280(02)00547-X

(62) Selvaraj, S., Rajkumar, P., Thirunavukkarasu, K., Gunasekaran, S., Kumaresan, S. Vibrational (FT-IR and FT-Raman), electronic (UV–vis) and quantum chemical investigations on pyrogallol: A study on benzenetriol dimers. Vib. Spectrosc, 2018, 95, 16-22. https://doi.org/10.1016/j.vibspec.2018.01.003

(63) Espina, A., Sanchez-Cortes, S., Jurašeková, Z. Vibrational study (Raman, SERS, and IR) of plant gallnut polyphenols related to the fabrication of iron gall inks. Molecules 2022, 27, 279. https://doi.org/10.3390/molecules27010279

(64) Albo Hay Allah, M., A., Balakit, A. A., Salman, H. I., Abdulridha, A. A., Sert, Y. New heterocyclic compound as carbon steel corrosion inhibitor in 1 M H2SO4. High efficiency at low concentration: experimental and theoretical studies. J. Adhesion Sci. Technol., 2022 37(3), 525–547. https://doi.org/10.1080/01694243.2022.2034588

(65) Krishnakumar, V., Dheivamalar, S. Density functional theory study of fourier transform infrared and raman spectra of 2-amino-5-chloro benzonitrile. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2008, 15,71(2), 465-70. https://doi:10.1016/j.saa.2007.11.028

(66) Thangarasu, S., Siva, V., Asath Bahadur, S., Athimoolam, S. Structural, vibrational, quantum chemical calculations, thermal and antimicrobial studies on nitrate salt of 3-nitroaniline. Opt. Quant. Electronics 2021, 53(10), 1–16. https://doi.org/10.1007/s11082-021-03146-w

(67) Jakobsen, R.J., Bentley, F.F., Vibrational spectra of benzene derivatives. II. Frequency assignments in the CsBr region. Appl. Spectrosc. 1964, 18(3), 88-92. https://doi:10.1366/000370264789620628

(68) Arjunan, V., Rani, K., Santhanalakshmi, T., Mohan, S.A. Combined experimental and theoretical quantum chemical studies on 4-morpholinecarboxaldehyde. Spectrochim. Acta. Part A, Mol. Biomol. Spectrosc. 2011, 79(5), 1395–401. https://doi.org/10.1016/j.saa.2011.04.074

(69) Sukumaran, S., Zochedh, A., Viswanathan, M.T., Sultan, B.A., Kathiresan, T. Theoretical investigation of 5-fluorouracil and tamoxifen complex – structural, spectrum, DFT, ADMET and docking simulation. Polycyclic Aromatic Compounds 2023, 43(10), 9443-9460. https://doi.org/10.1080/10406638.2022.2118332

(70) Michalska, D., Bienko, D.C., Bienko, A.J.A., Latajka, Z. Density functional, hartree−fock, and MP2 studies on the vibrational spectrum of phenol. J. Phys. Chem. 1996, 100(45), 17786-17790. https://doi.org/10.1021/jp961376v

(71) D.N., Sathyanarayana, Vibrational Spectroscopy—Theory and Applications, second ed., New Age International (P) Limited Publishers, New Delhi, 2004.

(72) Koczoń, P., Dobrowolski, J.Cz., Lewandowski, W., Mazurek, A.P. Experimental and theoretical IR and Raman spectra of picolinic, nicotinic and isonicotinic acids. J. Mol. Struct. 2003, 655(1), 89-95 https://doi.org/10.1016/S0022-2860(03)00247-3

(73) Singh, R.N., Prasad, S.C. Vibrational spectra of isomeric bromoxylenes. Spectrochim. Acta. A Mol. Biomol. Spectrosc., 1974, 34-39. https://doi.org/10.1016/0584-8539(78)80183-4

(74) Sundaraganesan, N., Kalaichelvan, S., Meganathan, C., Joshua, B.D., Cornard, J. FT-IR, FT-Raman spectra and ab initio HF and DFT calculations of 4-N,N'-dimethylamino pyridine. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2008, 71(3), 898-906. https://doi.org/10.1016/j.saa.2008.02.016

(75) Sebastian, S., Sundaraganesan, N., Manoharan, S. Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of ferulic acid by density functional study. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2009, 74(2), 312-323 https://doi:10.1016/j.saa.2009.06.011

(76) Sajan, D., Binoy, J., Hubert Joe, I., Jayakumar, V.S., Zaleski, J. Vibrational spectral studies of methyl 3-(4-methoxyphenyl)prop-2-enoate, a new organic non-linear optic crystal. J. Raman Spectrosc. 2005, 36, 221-236 https://doi.org/10.1002/jrs.1279

(77) Silverstein, R.M., Webster, F.X., Kiemle, D.J. Spectrometric identification of organic compounds, John Wiley & Sons: Hoboken, NJ, 2005.

(78) Furmanova, N.G., Verin, I.A., Shyityeva, N. et al. Synthesis and crystal structure of the coordination compound of pyridoxine with manganese sulfate. Crystallogr. Rep. 2011, 56, 1033–1037. https://doi.org/10.1134/S1063774511060095

Downloads

Additional Files

Published

2024-12-23 — Updated on 2024-12-28

Versions

How to Cite

Cvetkovski, A., Pejov, L., Stojanovska Pecova, M. ., Petrushevski, G. ., & Makreski, P. (2024). Mechanochemical synthesis and solid-state characterization of molecular salts of pyridoxine: Vibrational spectroscopic and thermal consideration. Macedonian Journal of Chemistry and Chemical Engineering, 43(2), 239–255. https://doi.org/10.20450/mjcce.2024.2989 (Original work published December 23, 2024)

Issue

Section

Spectroscopy

Most read articles by the same author(s)