Synthesis, characterisation and voltammetric study of dimethylammonium lead iodide perovskite
DOI:
https://doi.org/10.20450/mjcce.2024.2861Keywords:
dimethylammonium lead iodide, cyclic voltammetry, PXRD, Vibrational spectroscopy, SEM-EDXAbstract
In the last decade, the most investigated perovskite materials are the hybrid organic-inorganic perovskites (HOIPs) due to their optoelectronic properties and possible application in the production of photovoltaics. This interest has led to an ongoing search for new HOIP variants, alongside thorough investigations of the properties of existing HOIPs. That is why our research in the field of organic-inorganic perovskites is aimed at the synthesis, characterization, and investigation of the electrochemical properties of dimethylammonium lead iodide (DMAPbI3) using voltammetric studies. A modified synthesis of DMAPbI3, differing slightly from the one described in the literature, was performed by combining stoichiometric amounts of lead iodide (PbI2) and dimethylammonium iodide (DMAI) dissolved in acetonitrile. After conducting controlled evaporation, a yellow crystalline powder of DMAPbI3 was obtained. The identity and purity of the obtained compound were confirmed by powder X-ray diffraction (PXRD), infrared (IR) and Raman spectroscopy, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). Investigations on the electrochemical properties of DMAPbI3 by cyclic voltammetry were performed with dichloromethane (DCM) and tetrabutylammonium chloride (TBAC) as the electrolyte. A paraffin-impregnated graphite electrode (PIGE) was used as a working electrode, on which the perovskite microparticles were immobilized. The electrochemical activity of DMAPbI3 is recognized through an intense, broad, and irreversible anodic peak attributed to the oxidation of the constituents to different possible products and the decomposition of the perovskite structure.
References
(1) Atta, N. F.; Galal, A.; El-Ads, E. H., Perovskite Mate-rials – Synthesis, Characterisation, Properties, and Applications; 2016. https://doi.org/10.5772/61280.
(2) Tilley, R. J. D., Perovskites: Structure–Property Rela-tionships, MRS Bulletin, 2017, 42 (04), 325. https://doi.org/10.1557/MRS.2017.81.
(3) Assirey, E. A. R. Perovskite Synthesis, Properties and Their Related Biochemical and Industrial Application. Saudi Pharm. J. 2019, 27 (6), 817–829.
https://doi.org/10.1016/J.JSPS.2019.05.003
(4) Zhang, L.; Mei, L.; Wang, K.; Lv, Y.; Zhang, S.; Lian, Y.; Liu, X.; Ma, Z.; Xiao, G.; Liu, Q.; Zhai, S.; Zhang, S.; Liu, G.; Yuan, L.; Guo, B.; Chen, Z.; Wei, K.; Liu, A.; Yue, S.; Niu, G.; Pan, X.; Sun, J.; Hua, Y.; Wu, W. Q.; Di, D.; Zhao, B.; Tian, J.; Wang, Z.; Yang, Y.; Chu, L.; Yuan, M.; Zeng, H.; Yip, H. L.; Yan, K.; Xu, W.; Zhu, L.; Zhang, W.; Xing, G.; Gao, F.; Ding, L., Advances in the Application of Perovskite Materials. Nanomicro Lett. 2023, 15 (1), 1–48.
https://doi.org/10.1007/S40820-023-01140-3
(5) Seok, S. Il; Guo, T. F., Halide Perovskite Materials and Devices. MRS Bull. 2020, 45 (6), 427–430.
https://doi.org/10.1557/MRS.2020.140
(6) Cheetham, A. K.; Rao, C. N. R., Materials Science: There’s Room in the Middle. Science (1979) 2007, 318 (5847), 58–59.
(7) Férey, G., Microporous Solids: From Organically Templated Inorganic Skeletons to Hybrid Frameworks ... Ecumenism in Chemistry. Chem. Mater. 2001, 13 (10), 3084–3098.
https://doi.org/10.1021/CM011070N
(8) Li, W.; Wang, Z.; Deschler, F.; Gao, S.; Friend, R. H.; Cheetham, A. K., Chemically Diverse and Multifunc-tional Hybrid Organic–Inorganic Perovskites. Nat. Rev. Mater. 2017, 2 (3), 1–18.
https://doi.org/10.1038/natrevmats.2016.99
(9) Weber, D., CH3NH3PbX3, Ein Pb(II)-System Mit Ku-bischer Perowskitstruktur. Z. Naturforschung B. 1978, 33 (12), 1443–1445.
https://doi.org/10.1515/ZNB-1978-1214/MACHINEREADABLECITATION/RIS
(10) Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M., Conducting Tin Halides with a Layered Organ-ic-Based Perovskite Structure. Nature 1994, 369 (6480), 467–469. https://doi.org/10.1038/369467a0
(11) Mitzi, D. B., Templating and Structural Engineering in Organic–Inorganic Perovskites. J. Chem. Soc., Dalton Transactions 2001, No. 1, 1–12.
https://doi.org/10.1039/B007070J
(12) Mitzi, D. B.; Wang, S.; Feild, C. A.; Chess, C. A.; Guloy, A. M., Conducting Layered Organic-Inorganic Halides Containing -Oriented Perovskite Sheets. Sci-ence 1995, 267 (5203), 1473–1476.
https://doi.org/10.1126/SCIENCE.267.5203.1473
(13) Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D., Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors. Sci-ence (1979) 1999, 286 (5441), 945–947.
https://doi.org/10.1126/SCIENCE.286.5441.945
(14) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sen-sitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131 (17), 6050–6051. https://doi.org/10.1021/JA809598R
(15) Wang, Z.; Shi, Z.; Li, T.; Chen, Y.; Huang, W., Stabil-ity of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion. Angew. Chem. Int. Ed. Engl. 2017, 56 (5), 1190–1212.
https://doi.org/10.1002/ANIE.201603694
(16) Pellet, N.; Gao, P.; Gregori, G.; Yang, T. Y.; Nazee-ruddin, M. K.; Maier, J.; Grätzel, M., Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting. Angew. Chem. Int. Ed. Engl. 2014, 53 (12), 3151–3157.
https://doi.org/10.1002/ANIE.201309361
(17) Zou, S.; Liu, Y.; Li, J.; Liu, C.; Feng, R.; Jiang, F.; Li, Y.; Song, J.; Zeng, H.; Hong, M.; Chen, X., Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting Diodes. J. Am. Chem. Soc. 2017, 139 (33), 11443–11450.
https://doi.org/10.1021/JACS.7B04000/SUPPL_FILE/JA7B04000_SI_001.PDF
(18) Futscher, M. H.; Gangishetty, M. K.; Congreve, D. N.; Ehrler, B., Quantifying Mobile Ions and Electronic Defects in Perovskite-Based Devices with Tempera-ture-Dependent Capacitance Measurements: Frequen-cy vs Time Domain. J. Chem. Phys. 2020, 152 (4).
https://doi.org/10.1063/1.5132754.
(19) Liu, Y.; Yang, Z.; Cui, D.; Ren, X.; Sun, J.; Liu, X.; Zhang, J.; Wei, Q.; Fan, H.; Yu, F.; Zhang, X.; Zhao, C.; Liu, S., Two-Inch-Sized Perovskite CH3NH3PbX3 (X = Cl, Br, I) Crystals: Growth and Characterization. Adv. Mater. 2015, 27 (35), 5176–5183.
https://doi.org/10.1002/ADMA.201502597
(20) Quarti, C.; Mosconi, E.; Ball, J. M.; D’Innocenzo, V.; Tao, C.; Pathak, S.; Snaith, H. J.; Petrozza, A.; De An-gelis, F., Structural and Optical Properties of Me-thylammonium Lead Iodide across the Tetragonal to Cubic Phase Transition: Implications for Perovskite Solar Cells. Energy Environ. Sci.2016, 9 (1), 155–163. https://doi.org/10.1039/C5EE02925B
(21) García-Fernández, A.; Juarez-Perez, E. J.; Bermúdez-García, J. M.; Llamas-Saiz, A. L.; Artiaga, R.; López-Beceiro, J. J.; Señarís-Rodríguez, M. A.; Sánchez-Andújar, M.; Castro-García, S., Hybrid Lead Halide [(CH3)2NH2]PbX3 (X = Cl− and Br−) Hexagonal Perov-skites with Multiple Functional Properties. J. Mater. Chem. C. Mater. 2019, 7 (32), 10008–10018.
https://doi.org/10.1039/C9TC03543E
(22) Mancini, A.; Quadrelli, P.; Amoroso, G.; Milanese, C.; Boiocchi, M.; Sironi, A.; Patrini, M.; Guizzetti, G.; Malavasi, L., Synthesis, Structural and Optical Charac-terization of APbX3 (A=methylammonium, Dime-thylammonium, Trimethylammonium; X = I, Br, Cl) Hybrid Organic-Inorganic Materials. J. Solid State Chem. 2016, 240, 55–60.
https://doi.org/10.1016/J.JSSC.2016.05.015
(23) Martínez Muiño, A., Synthesis and Study of New Ma-terials with Barocaloric Properties. I Premio UDC Sus-tentabilidade a traballos fin de grao e mestrado 2018, ISBN 978-84-9749-783-1, 2019, 89–102.
(24) Pei, Y.; Liu, Y.; Li, F.; Bai, S.; Jian, X.; Liu, M., Un-veiling Property of Hydrolysis-Derived DMAPbI3 for Perovskite Devices: Composition Engineering, Defect Mitigation, and Stability Optimization. iScience 2019, 15, 165–172. https://doi.org/10.1016/J.ISCI.2019.04.024
(25) Wang, Y.; Liu, Y.; Wu, Y.; Jiang, J.; Liu, C.; Liu, W.; Gao, K.; Cai, H.; Wu, X. S., Properties and Growth of Large Single Crystals of One-Dimensional Organic Lead Iodine Perovskite. Cryst. Eng. Comm. 2020, 22 (42), 7090–7094. https://doi.org/10.1039/D0CE01104E
(26) Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Roun-tree, E. S.; Eisenhart, T. T.; Dempsey, J. L., A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95 (2), 197–206.
https://doi.org/10.1021/ACS.JCHEMED.7B00361/SUPPL_FILE/ED7B00361_SI_002.DOCX
(27) Bukleski, M.; Dimitrovska-Lazova, S.; Aleksovska, S., Vibrational Spectra of Methylammonium Iodide and Formamidinium Iodide in a Wide Temperature Range. Maced. J. Chem. Chem. Eng. 2019, 38 (2), 237–252. https://doi.org/10.20450/MJCCE.2019.1940
(28) Scholz, F.; Schröder, U.; Gulaboski, R., Electrochem-istry of Immobilized Particles and Droplets; 2005, 1–290. https://doi.org/10.1007/B137048.
(29) Pérez-Osorio, M. A.; Milot, R. L.; Filip, M. R.; Patel, J. B.; Herz, L. M.; Johnston, M. B.; Giustino, F., Vibra-tional Properties of the Organic-Inorganic Halide Per-ovskite CH3NH3PbI3 from Theory and Experiment: Factor Group Analysis, First-Principles Calculations, and Low-Temperature Infrared Spectra. J. Phys. Chem. C. 2015, 119 (46), 25703–25718.
https://doi.org/10.1021/ACS.JPCC.5B07432
(30) Dimitrovska-Lazova, S.; Bukleski, M.; Tzvetkov, P.; Pecovska-Gjorgjevich, M.; Kovacheva, D.; Ale-ksovska, S., The Mechanism of the Isostructural Phase Transition in C(NH2)3PbI3 as a Guide for Understand-ing the Properties of the New Phase. Mater. Chem. Phys. 2022, 275, 125240. https://doi.org/10.1016/J.MATCHEMPHYS.2021.125240
(31) Bukleski, M.; Dimitrovska-Lazova, S.; Aleksovska, S., Temperature Dependent Phase Transitions and Their Relation to Isosbestic Point Formation. Case Study of C(NH2)3PbI3. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2022, 266, 120462.
https://doi.org/10.1016/J.SAA.2021.120462
(32) Bukleski, M.; Dimitrovska-Lazova, S.; Makrievski, V.; Aleksovska, S., A Simple Approach for Determination of the Phase Transition Temperature Using Infrared Temperature-Induced Isosbestic Points. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2020, 231, 118118. https://doi.org/10.1016/J.SAA.2020.118118
(33) Leguy, A. M. A.; Goñi, A. R.; Frost, J. M.; Skelton, J.; Brivio, F.; Rodríguez-Martínez, X.; Weber, O. J.; Pal-lipurath, A.; Alonso, M. I.; Campoy-Quiles, M.; Weller, M. T.; Nelson, J.; Walsh, A.; Barnes, P. R. F., Dynamic Disorder, Phonon Lifetimes, and the As-signment of Modes to the Vibrational Spectra of Me-thylammonium Lead Halide Perovskites. Phys. Chem. Chem. Phys. 2016, 18 (39), 27051–27066.
https://doi.org/10.1039/C6CP03474H
(34) Gjorgjevikj, K.; Bukleski, M.; Dimitrovska-Lazova, S.; Aleksovska, S., Raman Spectroscopy as a Tool for Predicting the Dimensionality and Octahedra Connec-tivity in Lead Iodide Perovskites. J. Mol. Struct. 2023, 1293, 136236. https://doi.org/10.1016/J.MOLSTRUC.2023.136236
(35) Wei, D., Chen S., Liu Q., Review of Fluorescence Suppression Techniques in Raman Spectroscopy. 2024.
https://doi.org/10.1080/05704928.2014.999936
(36) Vickers, T. J.; Wambles, R. E.; Mann, C. K., Curve Fitting and Linearity: Data Processing in Raman Spec-troscopy. Appl. Spectrosc. 2001, 55 (4), 389–393. https://doi.org/10.1366/0003702011952127
(37) O’Grady, A.; Dennis, A. C.; Denvir, D.; McGarvey, J. J.; Bell, S. E. J., Quantitative Raman Spectroscopy of Highly Fluorescent Samples Using Pseudosecond De-rivatives and Multivariate Analysis. Anal. Chem. 2001, 73(9) (9), 2058–2065.
https://doi.org/10.1021/AC0010072
(38) Zhao, J.; Carrabba, M. M.; Allen, F. S., Automated Fluorescence Rejection Using Shifted Excitation Ra-man Difference Spectroscopy. 2002, 56 (7), 834–845.
https://doi.org/10.1366/000370202760171491
(39) Mahadevan-Jansen, A.; Lieber, C. A., Automated Method for Subtraction of Fluorescence from Biologi-cal Raman Spectra. Appl. Spectrosc. 2003, 57 (11), 1363–1367. https://doi.org/10.1366/000370203322554518
(40) Ruan, S.; McMeekin, D. P.; Fan, R.; Webster, N. A. S.; Ebendorff-Heidepriem, H.; Cheng, Y. B.; Lu, J.; Ruan, Y.; McNeill, C. R., Raman Spectroscopy of Forma-midinium-Based Lead Halide Perovskite Single Crys-tals. J. Phys. Chem. C. 2020, 124 (4), 2265–2272. https://doi.org/10.1021/ACS.JPCC.9B08917/SUPPL_FILE/JP9B08917_SI_001.PDF
(41) Samu, G. F.; Scheidt, R. A.; Kamat, P. V.; Janáky, C., Electrochemistry and Spectroelectrochemistry of Lead Halide Perovskite Films: Materials Science Aspects and Boundary Conditions. Chem. Mater. 2018, 30 (3), 561–569. https://doi.org/10.1021/ACS.CHEMMATER.7B04321/ASSET/IMAGES/LARGE/CM-2017-04321D_0007.JPEG
(42) Electroanalytical Chemistry. A Series of Advances. Volume 8 by Bard, Allen J., ed.: Good (1975) | Zubal-Books, Since 1961.
https://www.abebooks.com/servlet/BookDetailsPL?bi=13362053353&cm_sp=rec-_-pd_hw_i_1-_-bdp&ref_=pd_hw_i_1 (accessed 2024-03-12)
(43) Kadish, K. M.; Anderson, J. E., Purification of Sol-vents for Electroanalysis: Benzonitile. Pure Appl. Chem. 1987, 59 (5), 703–714.
https://doi.org/10.1351/PAC198759050703/PDF
(44) Huango, X. J.; Rogers, E. I.; Hardacre, C.; Compton, R. G., The Reduction of Oxygen in Various Room Temperature Ionic Liquids in the Temperature Range 293-318 K: Exploring the Applicability of the Stokes-Einstein Relationship in Room Temperature Ionic Liq-uids. J. Phys. Chem. B. 2009, 113 (26), 8953–8959.
https://doi.org/10.1021/JP903148W/SUPPL_FILE/JP903148W_SI_001.PDF
(45) Hayyan, M.; Hashim, M. A.; Alnashef, I. M., Superox-ide Ion: Generation and Chemical Implications. Chem. Rev. 2016, 116 (5), 3029–3085.
Downloads
Published
Versions
- 2024-05-20 (2)
- 2024-05-16 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 Jeta Sela, Leon Stojanov, Besarta Cheliku Ramadani, Miha Bukleski, Arianit Reka, Sandra Dimitrovska-Lazaova, Valentin Mirčeski, Slobotka Aleksovska
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.