The Future of Voltammetry
DOI:
https://doi.org/10.20450/mjcce.2022.2555Keywords:
cyclic voltammetry, pulse voltametric techniques, biosensors, nanomaterials, scanning electrochemical microscopyAbstract
It is exactly one hundred years ago when the first paper about the development of polarography was published in 1922. Polarography is considered a predecessor of voltammetry, and this iconic electrochemical technique was designed by the Nobel laureate Jaroslav Heyrovsky. In this short review, the aim is to highlight some of the most important achievements of voltammetry so far. While hints are given to some of the most important theoretical works related to various electrode mechanisms in cyclic voltammetry and pulse voltammetric techniques, a critical part is written that should help to improve the communication between theoretical and experimental electrochemists. Since a main application of voltammetry is in the field of constructing biosensors, some of the major achievements and several drawbacks of applying voltammetric techniques in designing sensors are discussed. In a small part of this review, the role of nanomaterials in voltammetry is also considered. As scanning electrochemical microscopy (SECM) seems to be most promising instrumental system that will bring voltammetry a step closer to probing real biological systems, critical aspects about the weaknesses of this technique are also briefly discussed. In the final outlooks, we present a set of directions in which voltammetry will develop in the coming years. The paper is written in a way to motivate younger electrochemists to get more involved in exploring the voltammetry.
References
(1) Heyrovský, J., Elektrolýza se rtuťovou kapkovou ka-thodou. Chem. Listy, 1922, 16, 256–264.
https://doi.org/10.1002/tcr.201200103
(2) Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goode-nough, J. B., LixCoO2 (0
https://doi.org/10.1016/0025-5408(80)90012-4
(3) Compton, R. G.; C. E. Banks, Understanding Voltammetry, 3rd edition. World Scientific Publishing Europe Ltd, UK, 2018.
(4) Bard, A. J.; Faulkner, L. R., Electrochemical methods: fundamentals and applications, 2nd ed. Wiley, New York (2001).
(5) Savéant, J-M.; Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry. John Wiley & Sons, 2006.
(6) Alkire, R. C.; Kolb, D. M.; Lipkowski, K., Bioelectro-chemistry: Fundamentals, Applications and Recent Developments, New Jersey, Wiley-VCH, 2011.
(7) Rodriguez, A. D., Drug-Drug Interactions. CRC Press, London UK, 2019.
(8) Gulaboski, R., Electrochemistry in twenty first centu-ry-Future trends and perspectives, J. Solid State. Elec-trochem., 2020, 24, 2081.
https://doi.org/10.1007/s10008-020-04550-0
(9) Bollella. P.; Katz E., Enzyme-based biosensors: Tackling electron transfer issues. Sensors, 2020, 20, 3517. https://doi org/10.3390/s20123517
(10) Leger, C.; Bertrand, P., Direct electrochemistry of Redox enzymes as a tool for mechanistic studies, Chem. Rev. 2007, 108, 2379–2438.
https://doi.org/10.1021/cr0680742
(11) Armstrong, F. A.; Heering, H. A.; Hirst, J., Reactions of complex metalloproteins studied by protein-film voltammetry. Chem. Soc. Rev. 1997, 26, 169–179.
https://doi org/10.1039/CS9972600169
(12) Armstrong, F. A., Insights from protein film voltammetry into mechanisms of complex biological electron-transfer reactions. J. Chem. Soc. Dalton. Trans. 2002, 5, 661–671.
(13) Nicholson, R. S., Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 1965, 37, 1351–1355.
https://doi.org/10.1021/ac60230a016
(14) Nicholson, R. S.; Shain, I., Theory of stationary electrode polarography single scan and cyclic methods applied to reversible, irreversible, and kinetic systems, Adv. Anal. Chem. 1964, 36, 706–723.
https://doi.org/10.1021/ac60210a007
(15) Mabbott, G. A., An introduction to cyclic voltammetry, J. Chem. Educ. 1983, 60, 607–702.
DOI:10.12691/wjce-3-5-2
(16) Gosser, D. K., Cyclic Voltammetry. Simulation and Analysis of Reaction mechanism, VCH, Weinheim, Germany, 1993.
(17) Heinze, J., Cyclovoltammetrie – Die "Spektroskopie" des Elektrochemikers. Angew. Chem. 1984, 96, 823–840. https://doi.org/10.1002/ange.19840961104
(18) Bard, A. J.; Zoski, C. G., Voltammetry retrospective. Anal. Chem. 2000, 72, 346A–352A.
https://doi.org/10.1021/ac002791t
(19) Klingler, R. J.; Kochi, J. K., Electron-transfer kinetics from cyclic voltammetry. Quantitative description of electrochemical reversibility. J. Phys. Chem. 1981, 85, 1731–1741. https://doi.org/10.1021/j150612a028
(20) Marken, F. A.; Neudeck, A.; Bond, A. M., Cyclic voltammetry. In: Electroanalytical Methods. Springer, Berlin, Heidelberg, 2010, pp. 57–106.
(21) Olmstead, M. L.; Hamilton, R. G.; Nicholson, R. S., Theory of cyclic voltammetry for a dimerization reaction initiated electrochemically. Anal. Chem. 1969, 41, 260–267. https://doi.org/10.1021/ac60271a032
(22) Gulaboski, R.; Kokoskarova, P.; Petkovska, S., Analysis of drug-drug interactions with cyclic voltammetry: An overview of relevant theoretical models and recent experimental achievements. Anal. Bioanal. Electrochem. 2020, 12, 345–364.
(23) Bott, A. W., A comparison of cyclic voltammetry and cyclic staircase voltammetry, Current Separations 1997, 16, 23–26.
(24) Olmstead, M. L., Nicholson, R. S., Cyclic voltammetry theory for the disproportionation reaction and spherical diffusion. Anal. Chem. 1969, 41, 862–864.
https://doi.org/10.1021/ac60275a004
(25) Heinze, J., Theory of cyclic voltammetry at microdisk electrodes. Ber. Bunsenges. Phys. Chem. 1981, 85, 1096–1103. https://doi.org/10.1002/bbpc.19810851204
(26) Feldberg, S. W., Nuances of the ECE mechanism. III. Effects of homogeneous redox equilibrium in cyclic voltammetry. J. Phys. Chem. 1971, 75, 2377–2380. https://doi.org/10.1021/j100684a025
(27) Saravanakumar, R.; Pirabaharan, P.; Rajendran, L., The theory of steady state current for chronoamperometric and cyclic voltammetry on rotating disk electrodes for EC’and ECE reactions. Electrochim. Acta, 2019, 313, 441–456. https://doi.org/10.1016/j.electacta.2019.05.033
(28) Keightley, A. M.; Myland, J. C.; Oldham, K. B.; Symons, P. G., Reversible cyclic voltammetry in the presence of product. J. Electroanal. Chem. 1992, 322, 25–54. https://doi.org/10.1016/0022-0728(92)80065-C
(29) Tokuda, K.; Morita, K.; Shimizu, Y., Cyclic voltammetry at microhole array electrodes. Anal. Chem., 1989, 61, 1763–1768.
https://doi.org/10.1021/ac00190a034
(30) Guo, J.; Lindner, E., Cyclic voltammetry at shallow recessed microdisc electrode: Theoretical and experimental study. J. Electroanal. Chem. 2009, 629, 180–184. https://doi.org/10.1016/j.jelechem.2009.01.030
(31) Ward, K. R.; Lawrence, N. S.; Hartshorne, R. S; Compton, R. G., The theory of cyclic voltammetry of electrochemically heterogeneous surfaces: comparison of different models for surface geometry and applications to highly ordered pyrolytic graphite. Phys. Chem. Chem. Phys. 2012, 147, 264–7275.
https://doi.org/10.1039/C2CP40412E
(32) Rudolph, M.; Reddy, D. P.; Feldberg, S. W., A simulator for cyclic voltammetric responses. Anal. Chem. 1994, 66, 589A–600A. https://doi.org/10.1021/ac00082a725
(33) Wightman, R. M.; Wipf, D. O., High-speed cyclic voltammetry. Acc. Chem. Res. 1990, 23, 64–70.
https://doi.org/10.1021/ar00171a002
(34) Zoski, C. G.; Bond, A. M.; Colyer, C. L.; Myland, J. C.; Oldham, K. B., Near-steady-state cyclic voltammetry at microelectrodes. J. Electroanal. Chem Interfacial Electrochem. 1989, 263, 1-21.
https://doi.org/10.1016/0022-0728(89)80120-2
(35) Belding, S. R.; Dickinson, E. J. F.; Compton, R. G., Diffusional cyclic voltammetry at electrodes modified with random distributions of electrocatalytic nanoparticles: theory. J. Phys. Chem. C, 2009, 113, 11149-11156. https://doi.org/10.1021/jp901664p
(36) Ching, S.; Dudek, R.; Tabet, E., Cyclic voltammetry with ultramicroelectrodes. J. Chem. Edu. 1994, 71, 602. https://doi.org/10.1021/ed071p602
(37) Gulaboski, R.; Ferreira, E. S.; Pereira, C. M.; Cordeiro, M. N. D. S.; Garau, A.; Lippolis, V.; Silva, V. A. F., Coupling of cyclic voltammetry and electrochemical impedance spectroscopy for probing the thermodynamics of facilitated ion transfer reactions exhibiting chemical kinetic hindrances. J. Phys. Chem. C, 2008, 112, 153-161.
https://doi.org/10.1021/jp076203s
(38) Kant, P. R., Theory for cyclic staircase voltammetry of two step charge transfer mechanism at rough elec-trodes. J. Phys. Chem. C, 2016, 120, 4306–4321.
https://doi.org/10.1021/acs.jpcc.6b00810
(39) Parker, V. D., Linear sweep and cyclic voltammetry. In: Comprehensive Chemical Kinetics 1986, 26, 145-202. https://doi.org/10.1016/S0069-8040(08)70027-X
(40) Bieniasz, L. K.; Gonzalez, J.; Molina, A.; Laborda, E., Theory of linear sweep/cyclic voltammetry for the electrochemical reaction mechanism involving a redox catalyst couple attached to a spherical electrode. Electrochim. Acta, 2010, 56, 543–552.
https://doi.org/10.1016/j.electacta.2010.09.014
(41) Bieniasz, L. K., Catalytic ErevCrev′ mechanism at cylindrical wire electrodes: Theory of controlled-potential transients assuming DO = DR, and highly accurate computation of chronoamperograms and cyclic voltammograms. J. Electroanal. Chem. 2021, 882, 114980. https://doi.org/10.1016/j.jelechem.2021.114980
(42) Molina, A.; Gonzalez, J.; Laborda, E.; Martinez-Ortiz, F.; Bieniasz, L. K., Electrocatalysis at modified microelectrodes: A theoretical approach to cyclic voltammetry. J. Phys. Chem. C, 2010, 114, 14542–14551. https://doi.org/10.1021/jp104860y
(43) Maestre, M. S.; Rodríguez-Amaro, R.; Muñoz, E.; Ruiz, J. J.; Camacho, L., Use of cyclic voltammetry for studying two-dimensional phase transitions: Behaviour at low scan rates. J. Electroanal. Chem. 1994, 373, 31–37. https://doi.org/10.1016/0022-0728(94)03317-X
(44) Molina, A.; González, J.; Laborda, E.; Wang, Y.; Compton, R. G., Catalytic mechanism in cyclic voltammetry at disc electrodes: An analytical solution. Phys. Chem. Chem. Phys. 2011, 13, 14694–14704.
https://doi.org/10.1039/C1CP21181A
(45) Myland, J. C.; Oldham, K. B., An analytical expression for the current-voltage relationship during reversible cyclic voltammetry. J. Electroanal. Chem. Interfacial Electrochem. 1983, 153, 43–54.
https://doi.org/10.1016/S0022-0728(83)80004-7
(46) Murphy, M. M.; O’Dea, J. J.; Arn, D.; Osteryoung, J. A., Theory of cyclic staircase voltammetry for first order coupled reactions. Anal. Chem. 1990, 62, 903–909. https://doi.org/10.1021/ac00208a004
(47) Murphy, M. M.; O’Dea, J. J.; Arn, D., Osteryoung, J. A., Theory of cyclic staircase voltammetry for elec-trode kinetics. Anal. Chem. 1989, 61, 2249–2254
https://doi.org/10.1021/ac00195a008
(48) Saveant, J. M., Cyclic voltammetry with asymmetrical potential scan: A simple approach to mechanisms in-volving moderately fast chemical reactions. Electro-chim. Acta 1967, 12, 999–1030.
https://doi.org/10.1016/0013-4686(67)80098-7
(49) Lovric, M.; Scholz, F., Modeling cyclic voltammograms of simultaneous electron and ion transfer reactions at a conic film three-phase electrode. J. Electroanal. Chem. 2003, 540, 86–96.
https://doi.org/10.1016/S0022-0728(02)01279-2
(50) Lovric, M.; Komorsky-Lovric, S., Distribution of three ions in thin-film experiment, Electrochem. Commun. 2003, 5, 637–643.
https://doi.org/10.1016/S1388-2481(03)00140-1
(51) Mirceski, V.; Komorsky-Lovric, S.; Lovric, M., Square-wave Voltammetry, Theory and Application (F. Scholz, ed.) Springer, Berlin, Heidelberg, Germany, 2007.
(52) Molina, A.; Gonzales, J., Pulse Voltammetry in Physical Electrochemistry and Electroanalysis In Monographs in Electrochemistry (F. Scholz ed.). Springer, Berlin – Heidelberg, 2016.
(53) Osteryoung, J.; O’Dea, J. J., Square-wave Voltammetry. In: Electroanalytical chemistry, A. J. Bard (ed.), Vol. 14, Marcel Dekker, New York, 1986.
(54) Bard, A. J.; Faulkner, L. R., Electrochemical Methods. Wiley, New York, 1980.
(55) Brett, C. M. A.; Brett, A. M. O., Electrochemistry: Principles, Methods and Applications. Oxford, Oxford University Press, 1993.
(56) Christensen, P. A.; Hamnet, A., Techniques and Mechanisms in Electrochemistry. Chapman & Hall, New York, 1994.
(57) Osteryoung J.; Osteryoung, R. A., Square-wave volt-ammetry, Anal. Chem. 1985, 57, 101A–110A. https://doi.org/10.1021/ac00279a004
(58) Lovric, M.; Osteryoung, J. J., Theory of differential normal pulse voltammetry. Electrochim. Acta 1983, 27, 963–968. https://doi.org/10.1016/0013-4686(82)80220-X
(59) Osteryoung, J., Developments in electrochemical instrumentation. Science 1982, 218, 261–265.
https://doi.org/10.1126/science.218.4569.261
(60) Aoki, K.; Tokuda, K.; Matsuda, H., Theory of differential pulse voltammetry at stationary planar electrodes. J. Electroanal. Chem. Interfacial Electro-chem. 1984, 175, 1–13.
https://doi.org/10.1016/S0022-0728(84)80342-3
(61) Gulaboski, R.; Bogeski, I., Women’s contribution in the pulse voltametric theories and applications: Pulse voltammetry stands on the shoulders of giant women-electrochemists. J. Electrochem. Soc. 2022, 169, 037519.
(62) Osteryoung, J. G.; Schreiner, M. M., Recent advances in pulse voltammetry. Crit. Rev. Anal. Chem. 1988, 19, S1–S27. https://doi.org/10.1080/15476510.1988.10401465
(63) Lovrić, M.; Jadreško, D.; Komorsky-Lovrić, Š., Theory of square-wave voltammetry of electrode reaction followed by the dimerization of product. Electrochim. Acta, 2013, 90, 226–231.
https://doi.org/10.1016/j.electacta.2012.11.101
(64) Tacussel, J.; Leclerc, P.; Fombon, J. J., Pulse voltammetry and polarography. J. Electroanal. Chem. Interfacial Electrochem. 1986, 214, 79–94.
https://doi.org/10.1016/0022-0728(86)80087-0
(65) Lovrić, M.; Branica, M., Square-wave voltammetric peak current enhancements by adsorption and reversibility of the redox reaction. J. Electroanal. Chem. Interfacial Electrochem. 1987, 226, 239–251.
https://doi.org/10.1016/0022-0728(87)80047-5
(66) Eccles, G. N., Recent advances in pulse cyclic and square-wave cyclic voltammetric analysis. Crit. Rev. Anal. Chem. 1991, 22, 345–380.
https://doi.org/10.1080/10408349108051639
(67) Camacho, L.; Ruiz, J. J.; Molina, A.; Serna, C., Double differential pulse voltammetry. J. Electroanal. Chem. 1994, 365, 97–105.
https://doi.org/10.1016/0022-0728(93)02984-P
(68) Johnson, D. C., Analytical electrochemistry: theory and instrumentation of dynamic techniques. Anal. Chem. 1982, 54, 9–19. https://doi.org/10.1021/ac00242a002
(69) Lovric, M.; O'Dea, J. J.; Osteryoung, J., Faradaic response in derivative and differential normal pulse voltammetry. Anal. Chem. 1983, 55, 704–708.
https://doi.org/10.1021/ac00255a028
(70) Serna, C.; Molina, A.; Camacho, L.; Ruiz, J. J., Triple-pulse voltammetry and polarography. Anal. Chem. 1993, 65, 215–222. https://doi.org/10.1021/ac00051a005
(71) Gulaboski, R.; Mirceski, V.; Lovric, M., Square-wave protein-film voltammetry: new insights in the enzymatic electrode processes coupled with chemical reactions. J. Solid State Electrochem. 2019, 23, 2493–2506.
https://doi.org/10.1007/s10008-019-04320-7
(72) Mirceski, V.; Guziejewski, D.; Stojanov, L., Gulaboski, R. Differential square-wave voltammetry. Anal. Chem. 2019, 91, 4904–14910.
https://doi.org/10.1021/acs.analchem.9b03035
(73) Mirceski, V.; Gulaboski, R., Recent achievements in square-wave voltammetry (a review). Maced. J. Chem. Chem. Eng. 2014, 33, 1–12.
https://doi.org/10.20450/mjcce.2014.515
(74) McAuley, C. B.; Katelhon, E.; Barnes, E. O.; Comp-ton, R. G.; Laborda, E.; Molina, A., Recent advances in voltammetry. Chem. Open, 2015, 4, 224–260.
https://doi: 10.1002/open.201500042
(75) Mirceski, V.; Guzijewski, D.; Gulaboski, R., Electrode kinetics from a single square-wave voltammograms. Maced. J. Chem. Chem. En. 2015, 34, 181–188.
https://doi.org/10.20450/mjcce.2020.2152
(76) Gulaboski, R.; Mirceski, V., New aspects of the electrochemical-catalytic (EC’) mechanism in square-wave voltammetry. Electrochim. Acta, 2015, 167, 219–225. https://doi.org/10.1016/j.electacta.2015.03.175
(77) Mann, M. A.; Bottomley, L. A., Cyclic square-wave voltammetry of surface-confined quasireversible elec-tron transfer reactions. Langmuir, 2015, 31, 9511–9520. https://doi.org/10.1021/acs.langmuir.5b01684
(78) Stojek, Z., Pulse voltammetry, In: Electroanalytical methods, 2nd edition (F. Scholz, ed.). Springer, Berlin, 2010, pp. 107–119.
(79) Drake, K. F.; Van Duyne, R. P.; Bond, A. M., Cyclic differential pulse voltammetry: A versatile instrumental approach using a computerized system, J. Electroanal. Chem. Interfacial Electrochem. 1978, 89, 231–246.
https://doi.org/10.1016/S0022-0728(78)80187-9
(80) Guziejewski, D.; Stojanov, L.; Gulaboski, R.; Mirceski, V., Reversible and quasireversible electron transfer under conditions of differential square-wave voltammetry. J. Phys. Chem. C 2022, 126, 5584–5591.
https://doi.org/10.1021/acs.jpcc.2c01188
(81) Kant, R., General theory for pulse voltammetric techniques at rough electrodes: multistep reversible charge transfer mechanism. Electrochim. Acta 2016, 220, 475–485.
https://doi.org/10.1016/j.electacta.2016.02.039
(82) Lovric, M., Square wave voltammetry. In: Electroana-lytical methods, 2nd edition (F. Scholz, ed.). Springer, Berlin, 2010, pp. 107–119.
(83) Mirceski, V.; Gulaboski, R., Surface catalytic mecha-nism in square-wave voltammetry. Electroanalysis 2001, 13, 1326–1334. https://doi.org/10.1002/1521-4109
(84) Mirceski, V.; Laborda, E.; Guziejewski, D.; Compton, R. G., Amplitude-based quasireversible maximum. Anal. Chem. 2013, 85, 5586–5594.
dx.doi.org/10.1021/ac4008573
(85) Mirceski, V., Charge transfer kinetics in thin-film volt-ammetry. Theoretical study under conditions of square-wave voltammetry. J. Phys. Chem. B 2004, 108, 13719–13725. https://doi.org/10.1021/jp0487152
(86) Guziejewski, D.; Mirceski, V.; Jadresko, D., Measur-ing the electrode kinetics of surface confined elec-trode reactions at constant scan rate. Electroanalysis 2015, 27, 67–73. https://doi.org/10.1002/elan.201400349
(87) Mirceski, V.; Lovric, M., Square-wave voltammetry of a cathodic stripping reaction complicated by adsorp-tion of reacting ligand. Anal. Chim. Acta 1999, 386, 47–62.
https://doi.org/10.1016/S0003-2670(99)00019-7
(88) Jadresko, D., Guziejewski, D., Mirceski, V., Electro-chemical Faradaic spectroscopy. ChemElectroChem. 2018, 5, 187–194.
https://doi.org/10.1002/celc.201700784
(89) Brumleve, T. R.; O’Dea, J. J.; Osteryoung, R. A.; Os-teryoung, J., Differential normal pulse voltammetry in the alternating pulse mode for reversible electrode re-actions. Anal. Chem. 1981, 53, 702–706.
https://doi.org/10.1021/ac00227a029
(90) Lovric, M.; Komorsky-Lovric, S.; Bond, A. M., Theo-ry of square-wave stripping voltammetry and chrono-amperometry of immobilized reactants. J. Electroanal. Chem. Interfacial Electrochem. 1991, 319, 1–18.
https://doi.org/10.1016/0022-0728(91)87064-B
(91) Heinemann, W. R.; Kissinger, P. T.; Wehmeyer, K. R., From polarography to electrochemical biosensors: The 100-year quest for selectivity and sensitivity. J. Elec-trochem. Soc. 2021, 168, 116504.
https://doi: 10.1149/1945-7111/ac33e3
(92) Sanati, A.; Jalali, M.; Raeissi, K.; Karimzadeh, F.; Kharaziha, M.; Mahshid, S. S.; Mahshid, S., A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials. Microchim. Acta, 2019, 186, 773. https://doi.org/10.1007/s00604-019-3854-2
(93) Turner, A. P. F., Biosensors: sense and sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196.
https://doi: 10.1039/c3cs35528d
(94) Bakirhan, N. K.; Topal, B. D.; Ozcelikay, G.; Kara-durmus, L.; Ozkan, S. A., Current advances in electro-chemical biosensors and nanobiosensors. Crit. Rev. Anal. Chem. 2022, 52, 519–534.
https://doi: 10.1039/c3cs35528d
(95) Kimmel, D. W.; Leblanc, G.; Meschievitz, M. E.; Cliffel, D. E., Electrochemical sensors and biosensors. Anal. Chem. 2012, 84, 685–707.
https://doi.org/10.1021/ac202878q
(96) Grieshaber, D.; MacKenzie, R.; Voros, R. J.; Reimhult, E., Electrochemical biosensors – Sensor principles and architectures. Sensors 2008, 8, 1400–1458.
https://doi.org/10.3390/s80314000
(97) Das, R.; Das, M.; Chinnadayyala, S. R.; M. Singha, I.; Goswami, P., Recent advances on developing 3rd generation enzyme electrode for biosensor applications. Biosens. Bioelectron. 2016, 79, 386–397.
https://doi.org/10.1016/j.bios.2015.12.055
(98) Armstrong, F. A.; Heering, H. A.; Hirst, J., Reactions of complex metalloproteins studied by protein-film voltammetry. Chem. Soc. Rev. 1997, 26, 169–179.
https://doi.org/10.1039/CS9972600169
(99) Heering, H. A.; Wiertz, F. G. M.; Dekker, C., De Vries, S., Direct immobilization of native yeast Iso-1 cyto-chrome C on bare gold: Fast electron relay to redox enzymes and zeptomole protein-film voltammetry. J. Am. Chem. Soc. 2004, 126, 11103–11112.
https://doi.org/10.1021/ja046737w
(100) Léger, C.; Elliott, S. J.; Hoke, K. R.; Jeuken, L. J. C.; Jones, A. K.; Armstrong, F. A., Enzyme electrokinetics: Using protein film voltammetry to investigate redox enzymes and their mechanisms. Biochemistry 2003, 42, 8653–8662. https://doi.org/10.1021/bi034789c
(101) Leger, C.; Bertrand, P., Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem. Rev. 2007, 108, 2379–2438.
https://doi.org/10.1021/cr0680742
(102) Gulaboski, R.; Mirceski, V.; Bogeski, I.; Hoth, M., Protein film voltammetry-electrochemical enzymatic spectroscopy. A review on recent progress. J. Solid State Electrochem. 2012, 16, 2315–2328.
https://doi.org/10.1007/s10008-011-1397-5
(103) Gulaboski, R.; Janeva, M.; Maksimova, V., New aspects of protein‐film voltammetry of redox enzymes coupled to follow‐up reversible chemical reaction in square‐wave voltammetry". Electroanalysis 2019, 31, 946–956. https://doi.org/10.1002/elan.201900028
(104) Gulaboski, R.; Mihajlov, L., Catalytic mechanism in successive two-step protein-film voltammetry – Theo-retical study in square-wave voltammetry. Biophys. Chem. 2011, 155, 1–9.
https://doi.org/10.1016/j.bpc.2011.01.010
(105) Mann, M. A.; Bottomley, L. A., Cyclic square-wave voltammetry of surface-confined quasireversible elec-tron transfer reactions. Langmuir 2015, 31, 9511–9520. https://doi.org/10.1021/acs.langmuir.5b01684
(106) Léger, C.; Elliott, S. J.; Hoke, K. R.; Jeuken, L. J. C.; Jones, A. K.; Armstrong, F. A., Enzyme electrokinetics: Using protein film voltammetry to investigate redox enzymes and their mechanisms. Biochemistry 2003, 42, 8653–8662. https://doi.org/10.1021/bi034789c
(107) Winkler, J. R.; Gray, H. B.; Long-range electron tunneling. J. Am. Chem. Soc. 2014, 136, 2930–2939. https://doi.org/10.1021/ja500215j
(108) Gulaboski, R.; Mirceski, V.; Lovric, M., Square-wave protein film voltammetry: new insights in the enzymat-ic electrode processes coupled with chemical reac-tions. J. Solid State Electrochem. 2016, 23, 2493–2506. https://doi.org/10.1007/s10008-019-04320-7
(109) Gulaboski, R.; Mirceski, V.; Lovric, M., Critical as-pects in exploring time analysis for the estimation of kinetic parameters of surface electrode mechanisms coupled with chemical reactions. Maced. J. Chem. Chem. Eng. 2021, 40, 1–9. https://doi.org/10.20450/mjcce.2021.2270
(110) Gulaboski, R.; Mirceski, V., Application of voltam-metry in biomedicine-Recent achievements in enzy-matic voltammetry. Maced. J. Chem. Chem. Eng. 2020, 39, 153–166. https://doi.org/10.20450/mjcce.2020.2152
(111) Hirst, J., Elucidating the mechanisms of coupled elec-tron transfer and catalytic reactions by protein film voltammetry. Biochim. Biophys. Acta. Bioenerg. 2006, 1757, 225–239.
https://doi.org/10.1016/j.bbabio.2006.04.002
(112) Zhang, H-N.; Guo, Z-Y.; Gai, P-P., Research progress in protein film voltammetry. Chin. J. Anal. Chem. 2009, 37, 461–465. https://doi.org/10.1016/S1872-2040(08)60093-6
(113) Bollella, P.; Hibino, Y.; Kano, K.; Gorton, L.; Antiochia, R., The influence of pH and divalent/monovalent cations on the internal electron transfer (IET), enzymatic activity, and structure of fructose dehydrogenase. Anal. Bioanal. Chem. 2018, 410, 3253–3264.
https://doi.org/10.1007/s00216-018-0991-0
(114) Bollella, P.; Gorton, L.; Ludwig, R.; Antiochia, R., A third generation glucose biosensor, based on cellobiose dehydrogenase immobilized on a glassy carbon electrode decorated with electrodeposited gold nanoparticles: Characterization and application in human saliva. Sensors 2017, 17, 1912.
https://doi.org/10.3390/s17081912
(115) Prabhulkar, S.; Tian, H.; Wang, X.; Zhu, J-J.; Li, C-Z., Engineered proteins: redox properties and their appli-cation. Antioxid. Redox Signal. 2012, 17, 1796–1822. https://doi.org/10.1089/ars.2011.4001
(116) Flexer, V.; Mano, N., Wired pyrroloquinoline quinone soluble glucose dehydrogenase enzyme electrodes op-erating at unprecedented low redox potential. Anal. Chem. 2014, 86, 2465–2473.
https://doi.org/10.1021/ac403334w.
(117) Algov, I.; Grushka J.; Zarivach R.; Alfonta, L., Highly efficient flavin-adenine dinucleotide glucose dehydro-genase fused to a minimal cytochrome c domain. J. Am. Chem. Soc. 2017, 139, 17217–17220.
https://doi.org/10.1021/jacs.7b07011
(118) Ma, S.; Laurent, C. V.; Meneghello, M.; Tuoriniemi, J.; Oostenbrink, C.; Gorton, L.; Bartlett, P. N.; Ludwig, R., Direct electron-transfer anisotropy of a site-specifically immobilized cellobiose dehydrogenase. ACS Catal. 2019, 9, 7607–7615. https://doi.org/10.1021/acscatal.9b02014
(119) Tavahodi, M.; Ortiz, R.; Schulz, C.; Ekhtiari, A.; Ludwig, R.; Haghighi, B.; Gorton, L., Direct electron transfer of cellobiose dehydrogenase on positively charged polyethyleneimine gold nanoparticles. ChemPlusChem. 2017, 82, 546–552.
https://doi.org/10.1002/cplu.201600453
(120) Al-Lolage, F. A.; Bartlett, P. N.; Gounel, S.; Staigre, P.; Mano, N., Site-directed immobilization of bilirubin oxidase for electrocatalytic oxygen reduction. ACS Catal., 2019 9, 2068–2078.
https://doi.org/10.1021/acs.chemrev.9b00115
(121) Bollella, P.; Katz, E., Enzyme-based biosensors: Tack-ling electron transfer issues. Sensors 2020, 20, 3517. https://doi.org/10.3390/s20123517
(122) Fomo, G.; Waryo, T.; Feleni, U.; Baker, P.; Iwuoha, E., Electrochemical polymerization. In: Functional polymers (M. A. J. Mazmuder, H. Sheardown, A. Ali-Ahmed, eds.). Springer, 2019, pp. 105–131.
(123) Lakard, B., Electrochemical biosensors based on con-ducting polymers: A review. Appl. Sci., 2020, 10, 6614. https://doi.org/10.3390/app10186614
(124) Barsan, M. M.; Emilia Ghica, M.; Brett, Ch. M. A., Electrochemical sensors and biosensors based on re-dox polymer/carbon nanotube modified electrodes: a review, Anal. Chim. Acta 2015, 881, 1–23.
https://doi.org/10.1016/j.aca.2015.02.059
(125) Cao, G., Nanostructures and Nanomaterials: Synthesis, Properties and Applications. Singapore, Imperial College Press, 2004.
(126) Nanoparticles: From Theory to Application, (G. Schmid, ed.). Wiley, 2006.
(127) Kleijn, S. E. F.; Lai, S. C. S.; Koper, M. T. M.; Unwin, P. R., Electrochemistry of nanoparticles. Angew. Chem. Int. Ed. 2014, 53, pp. 3558–3586.
(128) Handbook of Nanophysics, 1st edition, (K. D. Sattler, ed.). CRC Press, 2011.
(129) Nanoparticles for Biomedical Applications, (E. J. Chung, L. Leon, C. Rinaldi, eds.). Elsevier, 2019.
(130) Khatoon, U. T.; Rao, G. V. S. N.; Mantravadi, K. M.; Oztekin, Y., Strategies to synthesize various nanostructures of silver and their applications: A review. RSC Adv. 2018, 8, 19739–19753.
(131) Zeng, S.; Yong, K.-T.; Roy, I.; Dinh, X.-Q.; Yu, X.; Luan, F., A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 2011, 6, 491–506. https://doi.org/10.1007/s11468-011-9228-1
(132) Alex, S.; Tiwari, A., Functionalized gold nanoparticles: Synthesis, properties and applications: A review, J. Nanosci. Nanotechnol. 2015, 15, 1869–1894.
https://doi.org/10.1166/jnn.2015.9718
(133) Sawan, S.; Maalouf, R.; Errachid, A.; Jaffrezic-Renault, N., Metal and metal oxide nanoparticles in the voltammetric detection of heavy metals: A review. TrAC-Trend. Anal. Chem. 2020, 131, 116014.
https://doi.org/10.1016/j.trac.2020.116014
(134) Amina, S. J.; Guo, B., A review on the synthesis and functionalization of gold nanoparticles as a drug de-livery vehicle. Int. J. Nanomed. 2020, 15, 9823–9857. https://doi.org/10.2147/IJN.S279094
(135) Castaneda, M. T.; Alegret, S.; Merkoci, A., Electro-chemical sensing of DNA using gold nanoparticles. Electroanalysis 2007, 19, 743–753.
https://doi.org/10.1002/elan.200603784
(136) Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat. Mater. 2007, 6, 183–191.
(137) Brownson, D. A. C.; Banks, C. E., Graphene electro-chemistry: An overview of potential applications. The Analyst 2010, 135, 2768–2778.
https://doi.org/10.1039/C0AN00590H
(138) Rathinavel, S.; Priyadharshini, K.; Panda, D.; A re-view on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mat. Sci. Eng. B 2012, 268, 115095.
https://doi.org/10.1016/j.mseb.2021.115095
(139) Mallakpour, S.; Soltanian, S., Surface functionaliza-tion of carbon nanotubes: fabrication and applications. RSC Adv. 2016, 6, 109916–109935.
https://doi.org/10.1039/C6RA24522F
(140) Dubey, R.; Dutta, D.; Sarkar, A.; Chatopadhyay, P., Functionalized carbon nanotubes: synthesis, properties and applications in water purification, drug delivery, and material and biomedical sciences. Nanoscale Adv. 2021, 3, 5722–5744. https://doi.org/10.1039/D1NA00293G
(141) Barsan, M. M.; Ghica, M. E.; Brett, C. M. A., Electro-chemical sensors and biosensors based on redox pol-ymer/carbon nanotube modified electrodes: A review. Anal. Chim. Acta 2015, 881, 1–23.
https://doi.org/10.1016/j.aca.2015.02.059
(142) Kour, R.; Arya, S.; Young, S-J.; Gupta, V.; Bandhoria, P.; Khosla, A., Recent advances in carbon nano-materials as electrochemical biosensors. J. Electro-chem. Soc. 2020, 167, 037555.
https://doi: 10.1149/ 1945-7111/ab6bc4
(143) Wang, J., Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 2005, 17, 7–14. https://doi.org/10.1002/elan.200403113
(144) Casanova, A.; Iniesta, J.; Gomes-Berenguer, A., Re-cent progress in development of porous carbon-based electrodes for sensing applications. The Analyst 2022, 147, 767–783. https://doi.org/10.1039/d1an01978c
(145) David, S. A.; Rajkumar, R.; Karpagavinayagam, P.; Fernando, J.; Vedhi, C., Sustainable carbon nano-material-based sensors: Future vision for the next 20 years. Carbon Nanomaterials-based Sensors, 2022, 1, 429–443.
https://doi.org/10.1016/B978-0-323-91174-0.00011-1
(146) Das, P.; Das, M.; Chinnadayyala, S. R.; Singha, I. M.; Goswami, P., Recent advances on developing 3rd generation enzyme electrode for biosensor applications, Biosens. Bioelectron. 2016, 79, 386–397.
https://doi.org/10.1016/j.bios.2015.12.055
(147) Gupta, S.; Murthy, C. N.; Ratna Prabha, C., Recent advances in carbon nanotube based electrochemical biosensors. Int. J. Biol. Macromol. 2018, 108, 687–703. https://doi.org/10.1016/j.ijbiomac.2017.12.038
(148) Ferrier, D. C.; Honeychurch, K. C., Carbon nanotube (CNT)-based biosensors. Biosensors 2021, 11, 486.
https://doi.org/10.3390/bios11120486
(149) Berger, S.; Berger, M.; Bantz, C.; Maskos, M.; Wagner E., Performance of nanoparticles for biomedical ap-plications: The in vivo/in vitro discrepancy. Biophysics Rev. 2022, 3, 011303. https://doi.org/10.1063/5.0073494
(150) Wilson, G. S.; Gifford, R., Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 2005, 20, 2388–2403. https://doi.org/10.1016/j.bios.2004.12.003
(151) Bard, A. J.; Fan, F. R. F.; Kwak, J.; Lev, O., Scanning electrochemical microscopy. Introduction and princi-ples. Anal. Chem. 1989, 61, 132–138.
https://doi.org/10.1021/ac00177a011
(152) Filice, F. P.; Ding, Z., Analysing single live cells by scanning electrochemical microscopy. Analyst 2019, 144, 738–752. https://doi.org/10.1021/ac00177a011
(153) Oja,S. M.; Fan, Y.; Armstrong, C. M.; Defnet, P.; Zhang, B., Nanoscale electrochemistry revisited. Anal. Chem. 2016, 88, 414–430.
https://doi.org/10.1021/acs.analchem.5b04542
(154) Oswald, E.; Paalanisamy, K.; Kranz, C., Nanoscale surface modification via scanning electrochemical probe microscopy. Curr. Opin. Electrochem. 2022, 34, 100965. https://doi.org/10.1016/j.coelec.2022.100965
(155) Conzuelo, F.; Schulte, A.; Schuhmann, W., Biological imaging with scanning electrochemical microscopy. Proc. Math. Phys. Eng. Sci. 2018, 474, 20180409. https://doi.org/10.1098/rspa.2018.0409
(156) Morkvenaite-Vilkonciene, I.; Ramanaviciene, A.; Kisieliute, A.; Bucinskas, V.; Ramanavicius, A., Scan-ning electrochemical microscopy in the development of enzymatic sensors and immunosensors. Biosens. Bioelectron. 2019, 141, 111411.
https://doi.org/10.1016/j.bios.2019.111411
(157) Bentley, C. L.; Edmondson, J.; Meloni, G. N.; Perry, D.; Shkirskiy, V.; Unwin, P. R., Nanoscale electrochemical mapping. Anal. Chem. 2019, 91, 84–108.
https://doi.org/10.1021/acs.analchem.8b05235
(158) Polcari, D.; Dauphin-Ducharme, P.; Mauzeroll, J., Scanning electrochemical microscopy: A comprehen-sive review of experimental parameters from 1989 to 2015. Chem. Rev. 2016, 116, 13234–13278.
https://doi.org/10.1021/acs.chemrev.6b00067
(159) Gulaboski, R.; Mirceski, V.; Komorsky-Lovric, S.; Lovric, M., Three-phase electrodes: simple and effi-cient tool for analysis of ion transfer processes across liquid-liquid interface-twenty years on. J. Solid State Electrochem. 2020, 24, 2575–2583.
https://doi.org/10.1007/s10008-020-04629-8
(160) Scholz, F.; Schroder, U.; Gulaboski, R.; Domenech-Carbo, A., Electrochemistry of Immobilized Particles and Droplets, 2nd edition. Springer, Berlin – Heidel-berg 2015.
(161) Eissa, S.; Alhadrami, H. A.; Al-Mozaini, M.; Hassan, A. M.; Zourob, M., Voltammetric-based immunosen-sor for the detection of SARS-CoV-2 nucleocapsid an-tigen. Mikrochim. Acta 2021, 188, 199.
https://doi.org/10.1007/s00604-021-04867-1
(162) Mojsoska, B.; Larsen, S.; Aalund Olsen, D; Skov Madsen, J.; Brandslund, I.; Alatraktchi, F. A., Rapid SARS-CoV-2 detection using electrochemical im-munosensor. Sensors 2021, 21, 390.
https://doi.org/10.3390/s21020390
(163) Liv, L.; Coban, G.; Nakiboglu, N.; Kocagoz, T., A rapid, ultrasensitive voltammetric biosensor for deter-mining SARS-CoV-2 spike protein in real samples. Bi-osens. Bioelectron. 2021, 192, 113497.
https://doi.org/10.1016/j.bios.2021.113497
(164) Madhurantakam, S.; Muthukumar, S.; Prasad, S., Emerging electrochemical biosensing trends for rapid diagnosis of COVID-19 biomarkers as point-of-care platforms: A critical review. ACS Omega 2022, 7, 12467–12473. https://doi.org/10.1016/j.bios.2021.113497
Downloads
Published
Versions
- 2022-12-30 (2)
- 2022-11-30 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Rubin Gulaboski
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.