Voltammetric biosensors based on metallic nanoparticles synthesized from plant extracts: A short overview of recent achievements
DOI:
https://doi.org/10.20450/mjcce.2023.2786Keywords:
metallic nanoparticles;, green chemistry;, electrochemical biosensors;, voltammetry:Abstract
Since the last decade of the 20th century, many scientific disciplines have heavily relied on materials with nanometer dimensions. Nanomaterials are already integrated into numerous biomedical and pharmaceutical applications, including the delivery of active substances to specific targets within the body. This has been demonstrated by their contribution to the containment of the recent COVID-19 pandemic. Graphene, silver, gold, and other nanoparticles possess exceptional physical and chemical properties, including increased thermal stability, improved conductivity, and the capacity to host various organic substrates on their surface area. In the past 20 years, a significant field of nanoparticle synthesis has emerged, where eco-friendly reducing agents found in numerous plant species are used. This brief review focuses on the outstanding performance of metallic nanoparticles synthesized using "green methods" in designing voltammetric biosensors. The major goal of this short review is to highlight some of the latest electrochemical advances in exploring metallic nano-systems obtained via phytosynthesis from plant extracts, covering the most notable achievements in the design of amperometric and voltammetric biosensors.
References
(1) Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd edition. John Wiley&Sons Inc., New York, 2001.
(2) Compton, R. G., Banks, C. E., Understanding Voltam-metry, 3rd ed. World Scientific Publishing Europe Ltd, 2018.
(3) Butt, J. N., Armstrong, F. A., Voltammetry of adsorbed redox enzymes, in Bioinorganic electrochemistry. (O. Hammerich, J. Ulstrup. eds.), Springer, Netherlands, 2008.
(4) Wang, J., Analytical Electrochemistry, 3rd ed. John Wiley&Sons Inc. New York, 2006.
(5) Chillawar, R.; Tadi, K. K.; Motghare, R. V., Voltammet-ric techniques at chemically modified electrodes, J. Anal. Chem. 2015, 70, 399–418.
https://doi.org/10.1134/S1061934815040152
(6) Chen, A.; Chatterjee, S., Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 2013, 42, 5425–5438.
https://doi.org/10.1039/C3CS35518G
(7) Sawan, S.; Maalouf, R.; Errachid, A.; Jaffrezig-Renault, N., Metal and metal oxide nanoparticles in the detection of heavy metals. A review, TrAC Trends Anal. Chem. 2020, 131, 116014.
https://doi.org/10.1016/j.trac.2020.116014
(8) Kleijn, S. E. F.; Lai, S. C. S.; Koper, M. T. M.; Unwin, P. R., Electrochemistry of nanoparticles, Angew. Chem. Int. Ed. 2014, 53, 3558–3586.
https://doi.org/10.1002/anie.201306828
(9) Ying, S.; Guan, Z.; Ofoegbu, P. C.; Clubb, P.; Rico, C.; He, F.; Hong, J., Green synthesis of nanoparticles: Cur-rent developments and limitations, Envir. Technol. Innov. 2022, 26, 102336.
https://doi.org/10.1016/j.eti.2022.102336
(10) Hussain, I.; Singh, N. B.; Singh, A.; Singh, H.; Singh, S. C., Green synthesis of nanoparticles and its potential ap-plication, Biotechnol. Lett. 2016, 38, 545–560.
https://doi.org/10.1007/s10529-015-2026-7
(11) Dhillon, G. S.; Brar, S.K.; Kaur, S.; Verma, M., Green approach for nanoparticle biosynthesis by fungi current trends and applications. Crit. Rev. Biotechnol. 2012, 32, 49–73. https://doi.org/10.3109/07388551.2010.550568
(12) Feynman, R. P., There’s plenty of room at the bottom. Eng. Sci. 1960, 22, 22–36.
(13) Cao, G., Nanostructures and nanomaterials: Synthesis, properties and applications. Singapore: Imperial College Press, 2004.
(14) Lu, S-M.; Peng, Y-Y.; Ying, Y-L.; Long, Y-T., Electrochemical sensing at a confined space. Anal. Chem. 2020, 92, 5621–5644.
https://doi.org/10.1021/acs.analchem
(15) Khan, Ib.; Saeed, K.; Id. Khan, Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931.
https://doi.org/10.1016/j.arabjc.2017.05.011
(16) Katelhon, E.; Chen, L.; Compton, R. G., Nanoparticle Electrocatalysis: Unscrambling illusory inhibition and ca-talysis. Appl. Mater. Today. 2019, 15, 139–144.
DOI: 10.1016/j.apmt.2019.05.002
(17) Iravani, S., Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638–2650.
https://doi.org/10.1039/C1GC15386B
(18) Vollath, D., Agglomerates of nanoparticles. Beilstein J. Nanotechnol. 2020, 11, 854–857.
DOI: 10.3762/bjnano.11.70
(19) Akhtar, M. S.; Panwar, J.; Yun, Y.-S., Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain. Chem. Eng. 2013, 1, 591–602.
https://doi.org/10.1021/sc300118u
(20) Kim, J. S.; Kuk, E.; Yu, K. N.; Jong-Ho, K.; Park, S. J.; Lee, H. J.; Kim, S. H., Antimicrobial effects of silver nanoparticles. Nanomed. 2007, 3, 95–101.
DOI: 10.1016/j.nano.2006.12.001
(21) Javed, R.; Zia, M.; Naz, S.; Aisida, S. O.; ul Ain, N.; Ao, Q., Role of the capping agents in the application of nano-particles in biomedicine and environmental remediation: Recent trends and future prospects. J. Nanobiotechnol. 2020, 18.
https://doi.org/10.1186/s12951-020-00704-4
(22) Herrera-Marin, P.; Fernandez, L.; Pilaquinga F., F.; De-but, A.; Rodriguez, A.; Espinoza-Montero, P., Green synthesis of silver nanoparticles using aqueous extract of the leaves of fine aroma cocoa Theobroma cacao linneu (Malvaceae): Optimization by electrochemical techniques. Electrochim. Acta. 2023, 447, 142122.
https://doi.org/10.1016/j.electacta.2023.142122
(23) Amare, M.; Worku, A.; Kassa, A.; Hilluf, W., Green synthesized silver nanoparticle modified carbon paste electrode for SWAS voltammetric simultaneous determi-nation of Cd(II) and Pb(II) in Bahir Dar textile discharged effluent. Heliyon. 2020, 6.
https://doi.org/10.1016/j.heliyon.2020.e04401
(24) Ganash, A. A.; Alghamdi, R. A., Fabrication of a novel polyaniline/green-synthesized, silver-nanoparticle-modified carbon paste electrode for electrochemical sens-ing of lead ions. J. Chin. Chem. Soc. 2021, 68, 2312–232.
(25) Baghayeri, M.; Mahdavi, B.; Hosseinpor-Mohsen Abadi, Z.; Farhadi, S., Green synthesis of silver nanoparticles using water extract of Salvia Leriifolia: Antibacterial stud-ies and applications as catalysts in the electrochemical de-tection of nitrite. Appl. Organomet. Chem. 2017, 32. https://doi.org/10.1002/aoc.4057
(26) Elemike, E.; Fayemi, O.; Ekennia, A.; Onwudiwe, D.; Ebenso, E., Silver nanoparticles mediated by Costus afer leaf extract: Synthesis, antibacterial, antioxidant and elec-trochemical properties. Mol. 2017, 22, 701.
https://doi.org/10.3390/molecules22050701
(27) Zahran, M.; Beltagi, A. M,; Rabie, M.; Maher, R.; Hathoot, A. A.; Azzem, M. A., Biosynthesized silver nanoparticles for electrochemical detection of bromocresol green in river water. R. Soc. Open Sci. 2023, 10. https://doi.org/10.1098/rsos.221621
(28) Rashmi, B. N.; Harlapur, S. F.; Avinash, B.; Ravikumar, C. R.; Nagaswarupa, H. P.; Kumar, M. R. A.; Gurushantha, K.; Santosh, M. S., Facile green synthesis of silver oxide nanoparticles and their electrochemical, photocatalytic and biological studies. Inorg. Chem. Commun. 2020, 111, 107580.
DOI:10.1016/j.inoche.2019.107580
(29) Turunc, E.; Kahraman, O.; Binzet, R., Green synthesis of silver nanoparticles using pollen extract: Charac¬terization, assessment of their electrochemical and antioxidant activities. Anal. Biochem. 2021, 621, 114123. DOI:10.1016/j.ab.2021.114123
(30) Dodevska, T.; Vasileva, I.; Denev, P.; Karashanova, D.; Georgieva, B.; Kovacheva, D.; Slavov, A., Rosa damascena waste mediated synthesis of silver nanoparticles: Characteristics and application for an electrochemical sensing of hydrogen peroxide and vanil-lin. Mater. Chem. Phys. 2019, 231, 335–343. https://doi.org/10.1016/j.matchemphys.2019.04.030
(31) Ganash, A., Electrochemical properties and mechanistic study of the green synthesis of silver nanoparticles using Bardaqush extract solution. Mater. Res. Express. 2019, 6, 065024. https://doi.org/10.1088/2053-1591/ab0d40
(32) Elemike, E. E.; Onwudiwe, D. C.; Fayemi, O. E.; Ekennia, A. C.; Ebenso, E. E.; Tiedt, L. R., Biosynthesis, electrochemical, antimicrobial and antioxidant studies of silver nanoparticles mediated by Talinum triangulare aqueous leaf extract. J. Clust. Sci. 2017, 28, 309–330.
htps://doi:10.1007/s10876-016-1087-7
(33) Chinniah, K.; Kannan, K.; Maik, V.; Potemkin, V.; Grishina, M.; Jeyaseelan, S. J. C.; Muthuvel, A.; Gnanasangeetha, D.; Gurushanka, K., Electrochemical performance of plant trace element incorporated silver nanoparticles synthesis from Datura metel L, Indones. J. Biotechnol. 2023, 28, 94–101.
https://doi.org/10.22146/ijbiotech.76257
(34) Sreenivasulu, V., Biosynthesis of silver nanoparticles using Mimosa Pudica plant root extract: Charac¬terization, antibacterial activity and electrochemical detection of dopamine. Int. J. Electrochem. Sci. 2016, 11, 9959–9971. DOI:10.20964/2016.12.69
(35) Murthy, H. C. A.; Desalegn Zeleke, T.; Ravikumar, C. R.; Anilkumar, M. R.; Nagaswarupa, H., Electrochemical properties of biogenic silver nanoparticles synthesized using Hagenia abyssinica (Brace) JF. Gmel. medicinal plant leaf extract, Mater. Res. Express. 2020, 7, 055016.
DOI:10.1088/2053-1591/ab9252
(36) Pilaquinga, F.; Morey, J.; Fernandez, L.; Espinoza-Montero, P.; Moncada-Basualto, M.; Pozo-Martinez, J.; Olea-Azar, C.; Bosch, R.; Meneses, L.; Debut, A.; Piña, MN., Determination of antioxidant activity by oxygen radical absorbance capacity (ORAC-FL), cellular anti-oxidant activity (CAA), Electrochemical and micro-biological analyses of silver nanoparticles using the aqueous leaf extract of Solanum mammosum L. Int J Nanomedicine. 2021, 16, 5879–5894.
https://doi.org/10.2147/IJN.S302935
(37) Prabhu, A.; Shankar, K.; Muthukrishnan, P.; Kathiresan, A., Electrochemical studies of biosynthesized silver nanoparticles by using Setaria verticillata plant. J. Adv. Chem. Sci. 2016, 2, 302–304.
(38) Chinniah, K.; Kannan, K.; Maik, V.; Potemkin, V.; Grishina, M.; Johnson, S.; Jeyaseelan, C.; Muthuvel, A.; Gnanasangeetha, D.; Gurushankar, K., Electrochemical performance of plant trace element incorporated silver nanoparticles synthesis from Datura metel L. IJBiotech. 2023, 28, 94–101.
https://doi.org/10.22146/ijbiotech.76257
(39) Elemike, E. E.; Onwudiwe, D. C.; Fayemi, O. E.; Ekennia, A. C.; Ebenso, E. E.; Tiedt, L. R., Biosynthesis, electrochemical, antimicrobial and antioxidant studies of silver nanoparticles mediated by Talinum triangulare aqueous leaf extract, J. Clust. Sci. 2016, 28, 309–330.
DOI: 10.1088/1757-899X/805/1/012042
(40) Ivanisevic, I., The role of silver nanoparticles in electro-chemical sensors for aquatic environmental analysis. Sen-sors. 2023, 23, 3692.
https://doi.org/10.3390/s23073692
(41) Elemike, E. E.; Onwudiwe, D. C.; Fayemi, O. E.; Botha, T. L., Green synthesis and electrochemistry of Ag, Au, and Ag-Au bimetallic nanoparticles using golden rod (Solidago canadensis) leaf extract. J. Appl. Phys. 2019, 125.
DOI:10.1007/s00339-018-2348-0
(42) Chelly, M.; Chelly, S.; Zribi, R.; Bouaziz-Ketata, H.; Gdoura, R.; Lavanya, N.; Veerapandi, G.; Sekar, C.; Neri, G., Synthesis of silver and gold nanoparticles from Rumex roseus plant extract and their application in electrochemical sensors. J. Nanomater. 2021, 11, 739.
https://doi.org/10.3390/nano11030739
(43) Stozhko, N. Y.; Bukharinova, M. A.; Khamzina, E. I.; Tarasov, A. V., Electrochemical properties of phyto-synthesized gold nanoparticles for electrosensing. Sensors. 2022, 22, 311. DOI: 10.3390/s22010311
(44) Ebenso, E.; Masibi, K.; Fayemi, O.; Adekunle, A.; Sherif, E.-S., Electrochemical determination of caffeine using bimetallic Au‐Ag nanoparticles obtained from low‐cost green synthesis. Electroanalysis. 2020, 32, 2745–2755.
(45) Wang, D.; Wang, J.; Zhang, J.; Li, Y.; Zhang, Y.; Li, Y.; Ye, B.-C., Novel electrochemical sensing platform based on integration of molecularly imprinted polymer with Au@Ag hollow nanoshell for determination of resveratrol. Talanta. 2020, 196, 479–485.
https://doi.org/10.1016/j.talanta.2018.12.063
(46) Ghoreishi, S. M.; Behpour, M.; Khayatkashani, M., Green synthesis of silver and gold nanoparticles using Rosa damascena and its primary application in electrochemistry. Phys. E: Low-Dimens. Syst. Nanostructures. 2011, 44, 97–104.
https://doi.org/10.1016/j.physe.2011.07.008
(47) Huang, S.; Yang, J.; Li, S.; Qin, Y.; Mo, Q.; Chen, L.; Li, X., Highly sensitive molecular imprinted voltammetric sensor for resveratrol assay in wine via polyaniline/gold nanoparticles signal enhancement and polyacrylamide recognition. J. Electroanal. Chem. 2021, 895, 115455.
https://doi.org/10.1016/j.jelechem.2021.115455
(48) Li Y.; Wu,T-Y.; Chen, S-M.; Ajmal Ali, M.; AlHemaid, F. M. A., Green synthesis and electrochemical characterizations of gold nanoparticles using leaf extract of Magnolia Kobus. Int. J. Electrochem. Sci. 2012, 7, 12742–12751.
https://doi.org/10.1016/S1452-3981(23)16581-3
(49) Devnani, H.; Satsangee, S. P., Green gold nanoparticle modified anthocyanin-based carbon paste electrode for voltammetric determination of heavy metals. Int. J. Environ. Sci. Technol. 2014, 12, 1269–1282.
https://doi:10.1007/s13762-014-0497-z
(50) Thangavelu, K.; Raja, N.; Chen, S.-M.; Liao, W.-C., Nanomolar electrochemical detection of caffeic acid in fortified wine samples based on gold/palladium nanoparticles decorated graphene flakes. J. Colloid Interface Sci. 2017, 501, 77–85.
https://doi.org/10.1016/j.jcis.2017.04.04
(51) Shareef, S. N.; Bhavani, K. S.; Anusha, T.; Priyanka, P.; Rao, M. S., Eco-friendly green synthesis of Ag@Cu bimetallic nanoparticles: Evaluation of their structural, morphological and electrochemical characterizations. Vietnam J. Chem. 2023, 61, 220–226.
https://doi.org/10.1002/vjch.202200126
(52) Fuku, X.; Modibedi, M.; Mathe, M., Green synthesis of Cu/Cu2O/CuO nanostructures and the analysis of their electrochemical properties. SN Appl. Sci. 2020, 2, 902. https://doi.org/10.1007/s42452-020-2704-5
(53) Silmane Ben Ali, D.; Krid, F.; Nacef, M.; Boussaha, E. H.; Chelaghmia, M. L.; Tabet, H.; Selaimia, R.; Atamnia, A.; Affoune, A. M., Green synthesis of copper oxide nanoparticles using Ficus elastica extract for the electrochemical simultaneous detection of Cd2+, Pb2+, and Hg2+. RSC Adv. 2023, 13, 18734–18747.
https://doi.org/10.1039/D3RA02974C
(54) Singh, P.; Singh, K. R.; Singh, J.; Das, S. N.; Singh, R. P., Tunable electrochemistry and efficient antibacterial ac-tivity of plant-mediated copper oxide nanoparticles syn-thesized by Annona squamosa seed extract for agricultur-al utility. RSC Adv. 2021, 11, 18050–18060.
DOI:10.1039/d1ra02382a
(55) Sukumar, S.; Rudrasenan, A.; Padmanabhan Nambiar, D., Green-synthesized rice-chaped copper oxide nano-particles using Caesalpinia bonducella seed extract and their applications. ACS Omega. 2020, 5, 1040–1051.
https://doi:10.1021/acsomega.9b02857
(56) Avinash, B.; Ravikumar, C. R.; Kumar, M. R. A.; Nagaswarupa, H. P.; Santosh, M. S.; Bhatt, A. S.; Kuznetsov, D., Nano CuO: Electrochemical sensor for the determination of paracetamol and d-glucose. J. Phys. Chem. Solids. 2019, 134, 193–200.
https://doi.org/10.1016/j.jpcs.2019.06.012
(57) Raghavendra, N.; Nagaswarupa, H. P.; Mylarappa, M.; Shashi Shekhar, T. R., CoFe2O4 nanoparticle using Aloe vera and Flacortia indica root extract by green approach: Electrochemical, sensor and antibacterial applications. SSRN. 2022. http://dx.doi.org/10.2139/ssrn.4191252
(58) Sharma, D.; Sabela, M. I.; Kanchi, S.; Bisetty, K.; Skelton, A. A.; Honarparvar, B., Green synthesis, characterization and electrochemical sensing of silymarin by ZnO nanoparticles: Experimental and DFT studies. J. Electroanal.Chem. 2018, 808, 160–172.
https://doi.org/10.1016/j.jelechem.2017.11.039
(59) Okpara, E. C.; Fayemi, O. E.; Sherif, E. S. M.; Junaedi, H.; Ebenso, E. E., Green wastes mediated zinc oxide nanoparticles: Synthesis, characterization and electro-chemical studies. Mater. 2020, 13, 4241.
https://doi.org/10.3390/ma13194241
(60) Mayedwa, N.; Khalil, A. T.; Mongwaketsi, N.; Matinise, N.; Shinwari, Z. K.; Maaza, M., The study of structural, physical and electrochemical activity of Zno Nano¬particles synthesized by green natural extracts of Sageretia thea. Nano Res. 2017, 3.
DOI:10.21767/2471-9838.100026
(61) Mayedwa, N.; Mongwaketsi, N.; Khamlich, S.; Kaviyarasu, K.; Matinise, N.; Maaza, M., Green synthesis of zin tin oxide (ZnSnO3) nanoparticles using Aspalathus Linearis natural extracts: Structural, morphological, optical and electrochemistry study. Appl. Surf. Sci. 2018, 446, 250–257.
https://doi.org/10.1016/j.apsusc.2017.12.161
(62) Kumar, M. R. A.; Nagaswarupa, H. P.; Ravikumar, C. R.; Prashantha, S. C.; Nagabhushana, H.; Bhatt, A. S., Green engineered nano MgO and ZnO doped with Sm3+: Synthesis and a comparison study on their characterization, PC activity and electrochemical properties. J. Phys. Chem. Solids. 2019, 127, 127–139. https://doi.org/10.1016/j.jpcs.2018.12.012
(63) Raveesha, H. R.; Nayana, S.; Vasudha, D. R.; Begum, J. P. S.; Pratibha, S.; Ravikumara, C. R.; Dhananjaya, N., The electrochemical behavior, antifungal and cytotoxic activities of phytofabricated MgO nanoparticles using Withania somnifera leaf extract. J SCI-Adv. Mater. Dev. 2019, 4, 54–65. DOI:10.1016/j.jsamd.2019.01.003
(64) Mamatha, K. M.; Srinivasa Murthy, V.; Ravikumar, G. R.; Ananda Murthy, H. C.; Dileep Kumar, V. G.; Naveen Kumar, A.; Jahagirdar, A. A. Facile green synthesis of Molybdenum oxide nanoparticles using Centella Asiatica plant: Its photocatalytic and electrochemical lead sensor applications. Sens. Int. 2022, 3, 100153. https://doi.org/10.1016/j.sintl.2021.100153
(65) Bashir, A. K.; Matinise, N.; Sackey, J.; Kaviyarasu, K.; Madiba, I. G.; Kodseti, L.; Ezema, F.; Maaza, M., Investigation of electrochemical performance, optical and magnetic properties of NiFe2O4 nanoparticles prepared by a green chemistry method. Physica E. Low Dimens. Syst. Nanostruct. 2020, 119, 114002.
https://doi.org/10.1016/j.physe.2020.114002
(66) Uwaya, G. E.; Fayemi, O. E.; Sherif, E.-S. M.; Junaedi, H.; Ebenso, E. E., Synthesis, electrochemical studies, and antimicrobial properties of Fe3O4 nanoparticles from Callistemon viminalis plant extracts. Materials. 2020, 13, 4894. DOI:10.3390/ma13214894
(67) Gebretinsae, H.; Welegergs, G.; Matinise, N.; Maaza, M.; Nuru, Z. Y. Electrochemical study of nickel oxide (NiO) nanoparticles from cactus plant extract. MRS Adv. 2020, 5, 1–8. DOI:10.1557/adv.2020.118
(68) Khan, Z. U. H.; Gul, N. S,; Mehmood, F.; Sabahat, S.; Muhammed, N.; Rahim, A.; Iqbal, J.; Khasim, S.; Salam, A. M.; Khan, M. T.; Wu, J., Green synthesis of lead oxide nanoparticles for photo-electrocatalytic and antimicrobial applications. Front. Chem. 2023, 11.
https://doi.org/10.3389/fchem.2023.1175114
(69) Hano, C.; Abbasi, B. H., Plant-based green synthesis of nanoparticles: Production, characterization and appli-cations. Biomolecules. 2022, 12, 31.
DOI: 10.3390/biom12010031
(70) Gulaboski, R.; Mirčeski, V., Application of voltammetry in biomedicine–Recent achievements in enzymatic volt-ammetry. Maced. J. Chem. Chem. Eng. 2020, 39, 153–166. https://doi.org/10.20450/mjcce.2020.2152
(71) Gulaboski, R., The future of voltammetry. Maced. J. Chem. Chem. Eng. 2022, 41, 151–162.
DOI: 10.20450/mjcce.2022.2555
Downloads
Published
Versions
- 2023-12-24 (2)
- 2023-12-18 (1)
How to Cite
Issue
Section
License
Copyright (c) 2023 Rubin Gulaboski, Sanja Lazarova, Pavlinka Kokoskarova, Elena Joveva
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.