Characterization of tea water extracts and their utilization for dyeing and functionalization of fabrics of different chemical compositions
DOI:
https://doi.org/10.20450/mjcce.2023.2698Keywords:
Tea water extract, Fabric, Functionalization, Dyeing, Antioxidant and antimicrobial activityAbstract
Green, black, rooibos, and hibiscus tea (GT, BT, RT, and HT) water extracts were prepared and characterized in terms of total flavonoids (TFC) and phenolic (TPC) contents, antioxidant and antimicrobial activities. BT has the highest, while HT has the lowest TFC (1213 vs. 415 mg L-1), while the extracts’ TPCs (2283-7251 mg L-1) decreased in the following order: BT > GT > RT > HT. Their antioxidant activities of 78.1-93.1 % and 97.8-100 % were determined according to DPPH and ABTS methods, respectively. BT and especially GT water extracts possessed mild effects against several microorganisms. All examined extracts have an affinity for dyeing wool, cellulose acetate, polyamide, and cotton which is proven by the color strength values of 1.65-19.12. Wool, polyacrylonitrile, polyester, polyamide, cotton, and cellulose acetate functionalized with GT water extract inhibited the growth of S. aureus and, E. coli, while polyacrylonitrile and cotton also inhibited the growth of E. faecalis, and C. albicans, respectively. Wide inhibition zones for S. aureus were observed for fabrics functionalized with BT water extract. Generally, the investigated fabrics showed very high (81.60-100 %) ABTS radical scavenging ability independently on used extract. TPCs are in good linear correlations with the antioxidant activities of wool and polyacrylonitrile determined by DPPH method. Fabrics having different chemical compositions dyed and/or functionalized with GT, or BT water extract can be considered for functional clothing - fine stockings, as a wound dressing, and socks for people with sensitive skin or having irritation and inflammation of the skin.
References
(1) Textile Dyes Pollution: The Truth About Fashion’s Toxic Colours https://goodonyou.eco/textile-dyes-pollution (accessed 2022 - 12 -27)
(2) Dyeing for fashion: Why the clothes industry is causing 20% of water pollution https://www.euronews.com/green/2022/02/26/dyeing-for-fashion-why-the-fashion-industry-is-causing-20-of-water-pollution (accessed 2022 - 12 -27)
(3) Haji, A.; Rahimi, M. RSM Optimization of Wool Dyeing with Berberis Thunbergii DC Leaves as a New Source of Natural Dye. J. Nat. Fibers. 2022, 19 (8), 2785–2798. https://doi.org/10.1080/15440478.2020.1821293.
(4) Mansour, R.; Dhouib, S.; Sakli, F. UV Protection and Dyeing Properties of Wool Fabrics Dyed with Aqueous Extracts of Madder Roots, Chamomiles, Pomegranate Peels, and Apple Tree Branches Barks. J. Nat. Fibers. 2022, 19 (2), 610–620. https://doi.org/10.1080/15440478.2020.1758280.
(5) Joshi, S.; Kambo, N.; Dubey, S.; Shukla, P.; Pandey, R. Effect of Onion (Allium cepa L.) Peel Extract-based Nanoemulsion on Anti-microbial and UPF Properties of Cotton and Cotton Blended Fabrics. J. Nat. Fibers. 2022, 19 (14), 8345–8354. https://doi.org/10.1080/15440478.2021.1964127.
(6) Ivanovska, A.; Savić Gajić, I.; Lađarević, J.; Milošević, M.; Savić, I.; Mihajlovski, K.; Kostić, M. Sustainable Dyeing and Functionalization of Different Fibers Using Orange Peel Extract’s Antioxidants. Antioxidants 2022, 11 (10), 2059. https://doi.org/10.3390/antiox11102059.
(7) Ivanovska, A.; Veljović, S.; Reljić, M.; Lađarević, J.; Pavun, L.; Natić, M.; Kostić, M. Closing the Loop: Dyeing and Adsorption Potential of Mulberry Wood Waste. J. Nat. Fibers. 2022, 19 (15), 11050–11063. https://doi.org/10.1080/15440478.2021.2009398.
(8) Hernández, V. A.; Galleguillos, F.; Thibaut, R.; Müller, A. Fungal dyes for textile applications: testing of industrial conditions for wool fabrics dyeing. J. Text. I. 2019, 110 (1), 61–66. https://doi.org/10.1080/00405000.2018.1460037.
(9) Janković, V.; Marković, D.; Nikodinovic-Runic, J.; Radetić, M.; Ilic-Tomi, T. Eco-friendly dyeing of polyamide and polyamide-elastane knits with living bacterial cultures of two Streptomyces sp. Strains. World. J. Microbiol. Biot. 2023, 39, 32 https://doi.org/10.1007/s11274-022-03473-4.
(10) Dying for colour: Toxic dyes in the textile industry https://goodmakertales.com/toxic-dyes-in-textile-industry (accessed 2023 - 01 -10)
(11) Kumari, A.; Kumar, D. Evaluation of antioxidant and cytotoxic activity of herbal teas from Western Himalayan region: a comparison with green tea (Camellia sinensis) and black tea. Chem. Biol. Technol. Ag. 2022, 9, 33. https://doi.org/10.1186/s40538-022-00294-3.
(12) Pavun, L.; Đurđević, P.; Jelikić-Stankov, M.; Đikanović, D.; Uskoković-Marković, S. Determination of flavonoids and total polyphenol contents in commercial apple juices. Czech. J. Food Sci. 2018, 36 (3), 233–238. https://doi.org/10.17221/211/2017-CJFS.
(13) Gardner, P. T.; White, T. A. C.; McPhail, D. B.; Duthie, G. G. The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food. Chem. 2000, 68 (4) 471–474. https://doi.org/10.1016/S0308-8146(99)00225-3.
(14) Lađarević, J.; Božić, B.; Matović, L.; Božić Nedeljković, B.; Mijin, D. Role of the bifurcated intramolecular hydrogen bond on the physico-chemical profile of the novel azo pyridone dyes. Dyes Pigments 2019, 162, 562–572. https://doi.org/10.1016/j.dyepig.2018.10.058.
(15) CLSI M07: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically (2018)
(16) Yang, R.; He, C.; Pan, B.; Wang, Z. Color-matching model of digital rotor spinning viscose mélange yarn based on the Kubelka–Munk theory. Text. Res. J. 2022, 92 (3-4), 574–584. https://doi.org/10.1177/00405175211040871.
(17) Glaser, T. K.; Plohl, O.; Vesel, A.; Ajdnik, U.; Ulrih, N. P.; Hrnčič, M. K.; Bren, U.; Fras Zemljič, L. Functionalization of Polyethylene (PE) and Polypropylene (PP) Material Using Chitosan Nanoparticles with Incorporated Resveratrol as Potential Active Packaging. Materials 2019, 12 (13), 2118. https://doi.org/10.3390/ma12132118.
(18) К. H. Hong, Polym. Bull. (2022) (Article in Press) https://doi.org/10.1007/s00289-022-04374-0.
(19) CLSI M02: Performance Standards for Antimicrobial Disk Susceptibility Tests (2018)
(20) Gresham, B. J. Antimicrobials for Synthetic Fibers. In Bioactive Fibers and Polymers; American Chemical Society, Washington, 2001.
(21) Kaur, A.; Suri, R.; Rana, K.; Thakur, V.; Preeti; Dimri, P.; Mittal, N. Antioxidant levels in indian rose, hibiscus, chrysanthemum and marigold tea and their comparison with black and green tea. Int. Res. J. Pharm. 2019, 10 (10), 52–55. https://doi.org/10.7897/2230-8407.1010298.
(22) Aboagye, G.; Tuah, B.; Bansah, E.; Tettey, C.; Hunkpe, G. Comparative evaluation of antioxidant properties of lemongrass and other tea brands. Sci. Afr. 2021, 11, e00718. https://doi.org/10.1016/j.sciaf.2021.e00718.
(23) Büyükbalci, A.; El, S. N. Determination of In Vitro Antidiabetic Effects, Antioxidant Activities and Phenol Contents of Some Herbal Teas. Plant. Foods Hum. Nutr. 2008, 63, 27–33. https://doi.org/10.1007/s11130-007-0065-5.
(24) Akhter, K.; Ghous, T.; Ul abdin, Z.; Sadaf, E.; Hassan, A.; Irshad, A.; Andleeb, S. Pharmacological Approach to Glycemic Treatment Using Black, Green and Herbal Tea Extracts. Bangl. J. Bot. 2021, 50 (3), 491–498. https://doi.org/10.3329/bjb.v50i3.55827.
(25) Samadi, S.; Fard, F. R. Phytochemical properties, antioxidant activity and mineral content (Fe, Zn and Cu) in Iranian produced black tea, green tea and roselle calyces. Biocatal. Agr. Biotechnol. 2020, 23, 101472. https://doi.org/10.1016/j.bcab.2019.101472.
(26) Oh, J.; Jo, H.; Cho, A. R.; Kim, S.-J.; Han, J. Antioxidant and antimicrobial activities of various leafy herbal teas. Food Control 2013, 31 (2), 403–409. https://doi.org/10.1016/j.foodcont.2012.10.021.
(27) Paiva, L.; Rego, C.; Lima, E.; Marcone, M.; Baptista, J. Comparative Analysis of the Polyphenols, Caffeine, and Antioxidant Activities of Green Tea, White Tea, and Flowers from Azorean Camellia sinensis Varieties Affected by Different Harvested and Processing Conditions. Antioxidants 2021, 10 (2), 183. https://doi.org/10.3390/antiox10020183.
(28) Nadiah, N. I.; Cheng, L. H.; Azhar, M. E.; Karim, A. A.; Uthumporn, U.; Ruri, A. S. Determination of Phenolics and Antioxidant Properties in Tea and the Effects of Polyphenols on Alpha-Amylase Activity. Pak. J. Nutr. 2015, 14 (11), 808–817. https://doi.org/10.3923/pjn.2015.808.817.
(29) Vural, N.; Algan Cavuldak, Ö.; Akay, M. A.; Ertan Anlı R. Determination of the various extraction solvent effects on polyphenolic profile and antioxidant activities of selected tea samples by chemometric approach. J. Food Meas. Charact. 2020, 14, 1286–1305. https://doi.org/10.1007/s11694-020-00376-6.
(30) Platzer, M.; Kiese, S.; Tybussek, T.; Herfellner, T.; Schneider, F.; Schweiggert-Weisz, U.; Eisner, P. Radical Scavenging Mechanisms of Phenolic Compounds: A Quantitative Structure-Property Relationship (QSPR) Study. Front. Nutr. 2022, 9, 882458. https://doi.org/10.3389/fnut.2022.882458.
(31) Kramar, A.; Petrović, M.; Mihajlovski, K.; Mandić, B.; Vuković, G.; Blagojević, S.; Kostić, M. Selected Aromatic Plants Extracts as an Antimicrobial and Antioxidant Finish for Cellulose Fabric-Direct Impregnation Method. Fibers. Polym. 2021, 22 (12), 3317–3325. https://doi.org/10.1007/s12221-021-3007-1.
(32) Lencova, S.; Stiborova, H.; Munzarova, M.; Demnerova, K.; Zdenkova, K. Potential of Polyamide Nanofibers With Natamycin, Rosemary Extract, and Green Tea Extract in Active Food Packaging Development: Interactions With Food Pathogens and Assessment of Microbial Risks Elimination. Front. Microbiol. 2022, 13, 857423. https://doi.org/10.3389/fmicb.2022.857423.
(33) Radji, M.; Agustama, R. A.; Elya, B.; Tjampakasari, C. R. Antimicrobial activity of green tea extract against isolates of methicillin–resistant Staphylococcus aureus and multi–drug resistant Pseudomonas aeruginosa. Asian. Pac. J. Trop. Biomed. 2013, 3 (8), 663–667. https://doi.org/10.1016/S2221-1691(13)60133-1.
(34) Parvez, Md. A. K.; Saha, K.; Rahman, J.; Munmun, R. A.; Rahman, Md. A.; Dey, S. K.; Rahman, Md. S.; Islam, S.; Shariare, M. H. Antibacterial activities of green tea crude extracts and synergistic effects of epigallocatechingallate (EGCG) with gentamicin against MDR pathogens. Heliyon 2019, 5, e02126. https://doi.org/10.1016/j.heliyon.2019.e02126.
(35) Mašulović, A. D.; Lađarević, J. M.; Ivanovska, A. M.; Stupar, S. Lj.; Vukčević, M. M.; Kostić, M. M.; Mijin, D. Ž. Structural insight into the fiber dyeing ability: Pyridinium arylazo pyridone dyes. Dyes Pigments. 2021, 195, 109741. https://doi.org/10.1016/j.dyepig.2021.109741.
(36) Haddar, W.; Ticha, M. B.; Guesmi, A.; Khoffi, F.; Durand, B. A novel approach for a natural dyeing process of cotton fabric with Hibiscus mutabilis (Gulzuba): process development and optimization using statistical analysis. J. Clean. Prod. 2014, 68, 114–120. https://doi.org/10.1016/j.jclepro.2013.12.066.
(37) Mansour, R.; Ali, H. B. Investigating the Use of Chitosan: Toward Improving the Dyeability of Cotton Fabrics Dyed with Roselle (Hibiscus sabdariffa L.) J. Nat. Fibers. 2021, 18 (7), 1007–1016. https://doi.org/10.1080/15440478.2019.1675217.
(38) Rehman, A.; Irfan, M.; Hameed, A.; Saif, M. J.; Qayyum, A. A.; Farooq, T. Chemical-Free Dyeing of Cotton With Functional Natural Dye: A Pollution-Free and Cleaner Production Approach. Front. Env. Sci-Switz. 2022, 10, 848245. https://doi.org/10.3389/fenvs.2022.848245.
(39) Gorjanc, M.; Sluga Štih, R.; Vrhovski, I.; Curk, M. The Influence of Mordanting with Silver Nitrate on the Dyeability and UV Protection of Cotton Dyed with Green Tea. Tekstilec 2015, 58 (3), 191–198. https://doi.org/10.14502/Tekstilec2015.58.191–198.
(40) Önal, A.; Durdykulyyeva, S.; Özbek, O.; Nached, S. The use of Hibiscus sabdariffa Flower extracts in Cotton Fabric and Wool Yarn Dyeing. J. Inst. Eng. India Ser. E 2022, 103, 315–321. https://doi.org/10.1007/s40034-021-00235-z.
(41) Čuk, N.; Šala, M.; Gorjanc, M. Development of antibacterial and UV protective cotton fabrics using plant food waste and alien invasive plant extracts as reducing agents for the in-situ synthesis of silver nanoparticles. Cellulose 2021, 28, 3215–3233. https://doi.org/10.1007/s10570-021-03715-y.
(42) Islam, S.; Butola, B. S.; Roy, A. Chitosan polysaccharide as a renewable functional agent to develop antibacterial, antioxidant activity and colourful shades on wool dyed with tea extract polyphenols. Int. J. Biol. Macromol. 2018, 120, 1999–2006. https://doi.org/10.1016/j.ijbiomac.2018.09.167.
(43) Ghaheh, F. S.; Mortazavi, S. M.; Alihosseini, F.; Fassihi, A.; Nateri, A. S.; Abedi, D. Assessment of antibacterial activity of wool fabrics dyed with natural dyes. J. Clean. Prod. 2014, 72, 139–145. https://doi.org/10.1016/j.jclepro.2014.02.050.
(44) Ibrahim, N. A.; El-Zairy, E. M. R.; Eid, B. M. Eco-friendly modification and antibacterial functionalization of viscose fabric. J. Text. I. 2017, 108 (8), 1406–1411. https://doi.org/10.1080/00405000.2016.1254583.
Downloads
Additional Files
Published
Versions
- 2024-01-04 (4)
- 2023-12-25 (3)
- 2023-11-30 (2)
- 2023-11-29 (1)
How to Cite
Issue
Section
License
Copyright (c) 2023 Aleksandra Ivanovska, Leposava Pavun, Danijela Stojanović, Jelena Lađarević, Marina Milenković, Snežana Uskoković-Marković
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors agree to the following licence: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.